4: Dynamics
( \newcommand{\kernel}{\mathrm{null}\,}\)
- 4.1: Ultrarelativistic particles
- Ultrarelativistic objects are objects moving at nearly c . A good way of thinking about an ultrarelativistic particle is that it’s a particle with a very small mass. For example, the subatomic particle called the neutrino has a very small mass, thousands of times smaller than that of the electron.
- 4.2: E=mc²
- We now know the relativistic expression for kinetic energy in the limiting case of an ultrarelativistic particle: its energy is proportional to the “stretch factor” D of the Lorentz transformation. What about intermediate cases?
- 4.3: Relativistic Momentum
- Since mass and energy are equivalent, we must stop talking about a material object’s kinetic energy and consider instead its total energy E, which includes a contribution from its mass. Massless particles always move at v=c , while massive ones always move at v<c .
- 4.4: Systems with internal structure
- E=mc2 and the four-vector nature of p are both valid for systems with finite spatial extent, provided that the systems are isolated.
- 4.5: Force
- Force is a concept that is seldom needed in relativity, and that’s why this section is optional.
- 4.7: Tachyons and Faster-than-Light (FTL)
- A tachyons are hypothetical particle that always moves faster than light. Most physicists believe that faster-than-light (FTL) particles cannot exist because superluminal transmission of information would violate causality, since it would allow a causal relationship between events that were spacelike in relation to one another, and the timeordering of such events is different according to different observers.