2.2: Geometrical Shapes
- Page ID
- 76284
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)- know what a polygon is
- know what perimeter is and how to find it
- know what the circumference, diameter, and radius of a circle is and how to find each one
- know the meaning of the symbol ππ and its approximating value
- know what a formula is and four versions of the circumference formula of a circle
- know the meaning and notation for area
- know the area formulas for some common geometric figures
- be able to find the areas of some common geometric figures
- know the meaning and notation for volume
- know the volume formulas for some common geometric objects
- be able to find the volume of some common geometric objects
Polygons
We can make use of conversion skills with denominate numbers to make measurements of geometric figures such as rectangles, triangles, and circles. To make these measurements we need to be familiar with several definitions.
A polygon is a closed plane (flat) figure whose sides are line segments (portions of straight lines).
Polygons
Not polygons
Perimeter
The perimeter of a polygon is the distance around the polygon.
To find the perimeter of a polygon, we simply add up the lengths of all the sides.
Find the perimeter of each polygon.
Solution
\(\begin{array} {rcl} {\text{Perimeter}} & = & {\text{2 cm + 5 cm + 2 cm + 5 cm}} \\ {} & = & {\text{14 cm}} \end{array}\)
Solution
\(\begin{array} {rcr} {\text{Perimeter}} & = & {\text{3.1 mm}} \\ {} & & {\text{4.2 mm}} \\ {} & & {\text{4.3 mm}} \\ {} & & {\text{1.52 mm}} \\ {} & & {\text{5.4 mm}} \\ {} & & {\underline{\text{+ 9.2 mm}}} \\ {} & & {\text{27.72 mm}} \end{array}\)
Solution
Our first observation is that three of the dimensions are missing. However, we can determine the missing measurements using the following process. Let A, B, and C represent the missing measurements. Visualize
\(\text{A = 12m - 2m = 10m}\)
\(\text{B = 9m + 1m - 2m = 8m}\)
\(\text{C = 12m - 1m = 11m}\)
\(\begin{array} {rcr} {\text{Perimeter}} & = & {\text{8 m}} \\ {} & & {\text{10 m}} \\ {} & & {\text{2 m}} \\ {} & & {\text{2 m}} \\ {} & & {\text{9 m}} \\ {} & & {\text{11 m}} \\ {} & & {\text{1 m}} \\ {} & & {\underline{\text{+ 1 m}}} \\ {} & & {\text{44 m}} \end{array}\)
Practice Set A
Find the perimeter of each polygon.
- Answer
-
20 ft
Practice Set A
- Answer
-
26.8 m
Practice Set A
- Answer
-
49.89 mi
Circumference/Diameter/Radius
Diameter (d)
A diameter of a circle is any line segment that passes through the center of the circle and has its endpoints on the circle.
Radius (r)
A radius of a circle is any line segment having as its endpoints the center of the circle and a point on the circle.
The radius is one half the diameter.
Circumference (C)
The circumference of a circle is the distance around the circle. It is given by \(C = \pi d= 2 \pi r\)
Find the circumference of the circle.
Solution
Use the formula \(C = \pi d\).
\(C = \pi \cdot 7\ in.\)
By commutativity of multiplication,
\(C = 7\ in. \cdot \pi\)
\(C = 7 \pi in.\), exactly
This result is exact since \(\pi\) has not been approximated.
Find the perimeter of the figure.
Solution
We notice that we have two semicircles (half circles).
The larger radius is 6.2 cm.
The smaller radius is \(\text{6.2 cm - 2.0 cm = 4.2 cm.}\)
The width of the bottom part of the rectangle is 2.0 cm.
\(\begin{array} {rcll} {\text{Perimeter}} & = & {\text{2.0 cm}} & {} \\ {} & & {\text{5.1 cm}} & {} \\ {} & & {\text{2.0 cm}} & {} \\ {} & & {\text{5.1 cm}} & {} \\ {} & & {(0.5) \cdot (2) \cdot (3.14) \cdot \text{(6.2 com)}} & {\text{Circumference of outer semicircle.}} \\ {} & \ \ + & {\underline{(0.5) \cdot (2) \cdot (3.14) \cdot \text{(4.2 com)}}} & {\text{Circumference of inner semicircle.}} \\ {} & & {} & {\text{6.2 cm - 2.0 cm = 4.2 cm}} \\ {} & & {} & {\text{The 0.5 appears because we want the}} \\ {} & & {} & {\text{perimeter of only half a circle.}} \end{array}\)
\(\begin{array} {rcr} {\text{Perimeter}} & \approx & {\text{2.0 cm}} \\ {} & & {\text{5.1 cm}} \\ {} & & {\text{2.0 cm}} \\ {} & & {\text{5.1 cm}} \\ {} & & {\text{19.468 cm}} \\ {} & & {\underline{\text{+13.188 cm}}} \\ {} & & {\text{48.856 cm}} \end{array}\)
Practice Set B
Find the outside perimeter of
- Answer
-
41.634 mm
Exercises
Find each perimeter or approximate circumference. Use \(\pi = 3.14\).
Exercise \(\PageIndex{1}\)
- Answer
-
21.8 cm
Exercise \(\PageIndex{2}\)
Exercise \(\PageIndex{3}\)
- Answer
-
38.14 inches
Exercise \(\PageIndex{4}\)
Exercise \(\PageIndex{5}\)
- Answer
-
0.86 m
Exercise \(\PageIndex{6}\)
Exercise \(\PageIndex{10}\)
Exercise \(\PageIndex{12}\)
Exercise \(\PageIndex{13}\)
- Answer
-
120.78 m
Exercise \(\PageIndex{14}\)
Exercise \(\PageIndex{16}\)
Exercise \(\PageIndex{17}\)
- Answer
-
43.7 mm
The Meaning and Notation for Area
The product \(\text{(length unit)} \cdot \text{(length unit)} = \text{(length unit)}^2\), or, square length unit (sq length unit), can be interpreted physically as the area of a surface.
Area
The area of a surface is the amount of square length units contained in the surface.
For example, 3 sq in. means that 3 squares, 1 inch on each side, can be placed precisely on some surface. (The squares may have to be cut and rearranged so they match the shape of the surface.)
We will examine the area of the following geometric figures.
Area Formulas
We can determine the areas of these geometric figures using the following formulas.
Figure | Area Formula | Statement | |
Triangle | \(A_T = \dfrac{1}{2} \cdot b \cdot h\) | Area of a triangle is one half the base times the height. | |
Rectangle | \(A_R = l \cdot w\) | Area of a rectangle is the length times the width. | |
Parallelogram | \(A_P = b \cdot h\) | Area of a parallelogram is base times the height. | |
Trapezoid | \(A_{Trap} = \dfrac{1}{2} \cdot (b_1 + b_2) \cdot h\) | Area of a trapezoid is one half the sum of the two bases times the height. | |
Circle | \(A_c = \pi r^2\) | Area of a circle is \(\pi\) times the square of the radius. |
Finding Areas of Some Common Geometric Figures
Find the area of the triangle.
Solution
\(\begin{array} {rcl} {A_T} & = & {\dfrac{1}{2} \cdot b \cdot h} \\ {} & = & {\dfrac{1}{2} \cdot 20 \cdot 5 \text{ sq ft}} \\ {} & = & {10 \cdot 6 \text{ sq ft}} \\ {} & = & {60 \text{ sq ft}} \\ {} & = & {60 \text{ ft}^2} \end{array}\)
The area of this triangle is 60 sq ft, which is often written as 60 \(\text{ft}^2\).
Find the area of the rectangle.
Solution
Let's first convert 4 ft 2 in. to inches. Since we wish to convert to inches, we'll use the unit fraction \(\dfrac{\text{12 in.}}{\text{1 ft}}\) since it has inches in the numerator. Then,
\(\begin{array} {rcl} {\text{4 ft}} & = & {\dfrac{\text{4 ft}}{1} \cdot \dfrac{\text{12 in.}}{\text{1 ft}}} \\ {} & = & {\dfrac{4 \cancel{\text{ ft}}}{1} \cdot \dfrac{\text{12 in.}}{1 \cancel{\text{ ft}}}} \\ {} & = & {\text{48 in.}} \end{array}\)
Thus, \(\text{4 ft 2 in. = 48 in. + 2 in. = 50 in.}\)
\(\begin{array} {rcl} {A_R} & = & {l \cdot w} \\ {} & = & {\text{50 in.} \cdot \text{8 in.}} \\ {} & = & {400 \text{ sq in.}} \end{array}\)
The area of this rectangle is 400 sq in.
Find the area of the parallelogram.
Solution
\(\begin{array} {rcl} {A_P} & = & {b \cdot h} \\ {} & = & {\text{10.3 cm} \cdot \text{6.2 cm}} \\ {} & = & {63.86 \text{ sq cm}} \end{array}\)
The area of this parallelogram is 63.86 sq cm.
Find the area of the trapezoid.
Solution
\(\begin{array} {rcl} {A_{Trap}} & = & {\dfrac{1}{2} \cdot (b_1 + b_2) \cdot h} \\ {} & = & {\dfrac{1}{2} \cdot (\text{14.5 mm + 20.4 mm}) \cdot (4.1 \text{ mm})} \\ {} & = & {\dfrac{1}{2} \cdot (\text{34.9 mm}) \cdot (4.1 \text{ mm})} \\ {} & = & {\dfrac{1}{2} \cdot \text{(143.09 sq mm)}} \\ {} & = & {71.545 \text{ sq mm}} \end{array}\)
The area of this trapezoid is 71.545 sq mm.
Find the approximate area of the circle.
Solution
\(\begin{array} {rcl} {A_c} & = & {\pi \cdot r^2} \\ {} & \approx & {(3.14) \cdot (16.8 \text{ ft})^2} \\ {} & \approx & {(3.14) \cdot (\text{282.24 sq ft})} \\ {} & \approx & {888.23 \text{ sq ft}} \end{array}\)
The area of this circle is approximately 886.23 sq ft.
Practice Set A
Find the area of each of the following geometric figures.
- Answer
-
36 sq cm
Practice Set A
- Answer
-
37.503 sq mm
Practice Set A
- Answer
-
13.26 sq in.
Practice Set A
- Answer
-
367.5 sq mi
Practice Set A
- Answer
-
452.16 sq ft
Practice Set A
- Answer
-
44.28 sq cm
The Meaning and Notation for Volume
The product \(\text{(length unit)}\text{(length unit)}\text{(length unit)} = \text{(length unit)}^3\), or cubic length unit (cu length unit), can be interpreted physically as the volume of a three-dimensional object.
Volume
The volume of an object is the amount of cubic length units contained in the object.
For example, 4 cu mm means that 4 cubes, 1 mm on each side, would precisely fill some three-dimensional object. (The cubes may have to be cut and rearranged so they match the shape of the object.)
Volume Formulas
Figure | Volume Formula | Statement | |
Rectangular solid | \(\begin{array} {rcl} {V_R} & = & {l \cdot w \cdot h} \\ {} & = & {\text{(area of base)} \cdot \text{(height)}} \end{array}\) | The volume of a rectangular solid is the length times the width times the height. | |
Sphere | \(V_s = \dfrac{4}{3} \cdot \pi \cdot r^3\) | The volume of a sphere is \(\dfrac{4}{3}\) times \(\pi\) times the cube of the radius. | |
Cylinder | \(\begin{array} {rcl} {V_{Cyl}} & = & {\pi \cdot r^2 \cdot h} \\ {} & = & {\text{(area of base)} \cdot \text{(height)}} \end{array}\) | The volume of a cylinder is \(\pi\) times the square of the radius times the height. |
|
Cone | \(\begin{array} {rcl} {V_c} & = & {\dfrac{1}{3} \cdot \pi \cdot r^2 \cdot h} \\ {} & = & {\text{(area of base)} \cdot \text{(height)}} \end{array}\) | The volume of a cone is \(\dfrac{1}{3}\) times \(\pi\) times the square of the radius times the height. |
Finding Volumes of Some Common Geometric Objects
Find the volume of the rectangular solid.
Solution
\(\begin{array} {rcl} {V_R} & = & {l \cdot w \cdot h} \\ {} & = & {\text{9 in.} \cdot \text{10 in.} \cdot \text{3 in.}} \\ {} & = & {\text{270 cu in.}} \\ {} & = & {\text{270 in.}^3} \end{array}\)
The volume of this rectangular solid is 270 cu in.
Find the approximate volume of the sphere.
Solution
\(\begin{array} {rcl} {V_S} & = & {\dfrac{4}{3} \cdot \pi \cdot r^3} \\ {} & \approx & {(\dfrac{4}{3}) \cdot (3.14) \cdot \text{(6 cm)}^3} \\ {} & \approx & {(\dfrac{4}{3}) \cdot (3.14) \cdot \text{(216 cu cm)}} \\ {} & \approx & {\text{904.32 cu cm}} \end{array}\)
The approximate volume of this sphere is 904.32 cu cm, which is often written as 904.32 cm\(^3\).
Find the approximate volume of the cylinder.
Solution
\(\begin{array} {rcl} {V_{Cyl}} & = & {\pi \cdot r^2 \cdot h} \\ {} & \approx & {(3.14) \cdot (\text{4.9 ft})^2 \cdot \text{(7.8 ft)}} \\ {} & \approx & {(3.14) \cdot (\text{24.01 sq ft}) \cdot \text{(7.8 ft)}} \\ {} & \approx & {(3.14) \cdot \text{(187.278 cu ft)}} \\ {} & \approx & {\text{588.05292 cu ft}} \end{array}\)
The volume of this cylinder is approximately 588.05292 cu ft. The volume is approximate because we approximated \(\pi\) with 3.14.
Find the approximate volume of the cone. Round to two decimal places.
Solution
\(\begin{array} {rcl} {V_{c}} & = & {\dfrac{1}{3} \cdot \pi \cdot r^2 \cdot h} \\ {} & \approx & {(\dfrac{1}{3}) \cdot (3.14) \cdot (\text{2 mm})^2 \cdot \text{(5 mm)}} \\ {} & \approx & {(\dfrac{1}{3}) \cdot (3.14) \cdot (\text{4 sq mm}) \cdot \text{(5 mm)}} \\ {} & \approx & {(\dfrac{1}{3}) \cdot (3.14) \cdot \text{(20 cu mm)}} \\ {} & \approx & {20.9\overline{3} \text{ cu mm}} \\ {} & \approx & {\text{20.93 cu mm}} \end{array}\)
The volume of this cone is approximately 20.93 cu mm. The volume is approximate because we approximated \(\pi\) with 3.14.
Practice Set B
Find the volume of each geometric object. If \(\pi\) is required, approximate it with 3.14 and find the approximate volume.
- Answer
-
21 cu in.
Practice Set B
Sphere
- Answer
-
904.32 cu ft
Practice Set B
- Answer
-
157 cu m
Practice Set B
- Answer
-
0.00942 cu in.
Exercises
Find each indicated measurement.
Exercise \(\PageIndex{1}\)
Area
- Answer
-
16 sq m
Exercise \(\PageIndex{2}\)
Area
Exercise \(\PageIndex{3}\)
Area
- Answer
-
1.21 sq mm
Exercise \(\PageIndex{4}\)
Area
Exercise \(\PageIndex{5}\)
Area
- Answer
-
18 sq in.
Exercise \(\PageIndex{6}\)
Area
Exercise \(\PageIndex{7}\)
Exact area
- Answer
-
\((60.5 \pi + 132) \text{ sq ft}\)
Exercise \(\PageIndex{8}\)
Approximate area
Exercise \(\PageIndex{9}\)
Area
- Answer
-
40.8 sq in.
Exercise \(\PageIndex{10}\)
Area
Exercise \(\PageIndex{11}\)
Approximate area
- Answer
-
31.0132 sq in.
Exercise \(\PageIndex{12}\)
Exact area
Exercise \(\PageIndex{13}\)
Approximate area
- Answer
-
158.2874 sq mm
Exercise \(\PageIndex{14}\)
Exact area
Exercise \(\PageIndex{15}\)
Approximate area
- Answer
-
64.2668 sq in.
Exercise \(\PageIndex{16}\)
Area
Exercise \(\PageIndex{17}\)
Approximate area
- Answer
-
43.96 sq ft
Exercise \(\PageIndex{18}\)
Volume
Exercise \(\PageIndex{19}\)
Volume
- Answer
-
512 cu cm
Exercise \(\PageIndex{20}\)
Exact volume
Exercise \(\PageIndex{21}\)
Approximate volume
- Answer
-
11.49 cu cm
Exercise \(\PageIndex{22}\)
Approximate volume
Exercise \(\PageIndex{23}\)
Exact volume
- Answer
-
\(\dfrac{1024}{3} \pi \text{ cu ft}\)
Exercise \(\PageIndex{24}\)
Approximate volume
Exercise \(\PageIndex{25}\)
Approximate volume
- Answer
-
22.08 cu in.
Exercise \(\PageIndex{26}\)
Approximate volume
Exercises for Review
Exercise \(\PageIndex{27}\)
In the number 23,426, how many hundreds are there?
- Answer
-
4
Exercise \(\PageIndex{28}\)
List all the factors of 32.
Exercise \(\PageIndex{29}\)
Find the value of \(4 \dfrac{3}{4} - 3 \dfrac{5}{6} + 1 \dfrac{2}{3}\).
- Answer
-
\(\dfrac{31}{12} = 2 \dfrac{7}{12} = 2.58\)
Exercise \(\PageIndex{30}\)
Find the value of \(\dfrac{5 + \dfrac{1}{3}}{2 + \dfrac{2}{15}}\).
Exercise \(\PageIndex{31}\)
Find the perimeter.
- Answer
-
27.9m
Area (A) is measured in square units, perimeter (P) is measured in units, and circumference (C) is measured in units.
Square
\[P=4 s \]
\[A=s^{2}\]
Rectangle
\[P=2 l+2 w \]
\[A=l w\]
Parallelogram
\[P=2 a+2 b\]
\[A=b h\]
Trapezoid
\[P=a+b+c+d\]
\[A=\frac{1}{2} h(a+b)\]
Triangle
\[P=a+b+c\]
\[A=\frac{1}{2} b h\]
Circle
\[C=2 \pi \]
\[r=\pi r^{2}\]
Volume (V) is measured in cubic units and surface area (SA) is measured in square units.
Cube
\[S A=6 s^{2}\]
\[V=s^{3}\]
Rectangular Solid
\[S A=2 l w+2 l h+2 w h\]
\[V=l w h\]
Right Circular Cylinder
\[S A=2 \pi r^{2}+2 \pi r h\]
\[V=\pi r^{2} h\]
Right Circular Cone
\[S A=\pi r^{2}+\pi r s\]
\[V=\frac{1}{3} \pi r^{2} h\]
Sphere
\[S A=4 \pi r^{2}\]
\[V=\frac{4}{3} \pi r^{3}\]