Skip to main content
Physics LibreTexts

66.16: Vector Arithmetic

  • Page ID
    91946
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A vector A may be written in cartesian (rectangular) form as

    \[\mathbf{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}\]

    where \(\mathbf{i}\) is a unit vector (a vector of magnitude 1) in the \(x\) direction, \(\mathbf{j}\) is a unit vector in the \(y\) direction, and \(\mathbf{k}\) is a unit vector in the \(z\) direction. \(A_{x}, A_{y}\), and \(A_{z}\) are called the \(x, y\), and \(z\) components (respectively) of vector \(\mathbf{A}\), and are the projections of the vector onto those axes.

    The magnitude ("length") of vector \(\mathbf{A}\) is

    \[\\mathbf{A}|=A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}\]

    For example, if \(\mathbf{A}=3 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}\), then \(|\mathbf{A}|=A=\sqrt{3^{2}+5^{2}+2^{2}}=\sqrt{38}\).

    In two dimensions, a vector has no \(\mathbf{k}\) component: \(\mathbf{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j}\).

    Addition and Subtraction

    To add two vectors, you add their components. Writing a second vector as \(\mathbf{B}=B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}\), we have

    \[\mathbf{A}+\mathbf{B}=\left(A_{x}+B_{x}\right) \mathbf{i}+\left(A_{y}+B_{y}\right) \mathbf{j}+\left(A_{z}+B_{z}\right) \mathbf{k} .\]

    For example, if \(\mathbf{A}=3 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}\) and \(\mathbf{B}=2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}\), then \(\mathbf{A}+\mathbf{B}=5 \mathbf{i}+4 \mathbf{j}+6 \mathbf{k}\).

    Subtraction of vectors is defined similarly:

    \[\mathbf{A}-\mathbf{B}=\left(A_{x}-B_{x}\right) \mathbf{i}+\left(A_{y}-B_{y}\right) \mathbf{j}+\left(A_{z}-B_{z}\right) \mathbf{k} .\]

    For example, if \(\mathbf{A}=3 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}\) and \(\mathbf{B}=2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}\), then \(\mathbf{A}-\mathbf{B}=\mathbf{i}+6 \mathbf{j}-2 \mathbf{k}\).

    Scalar Multiplication

    To multiply a vector by a scalar, just multiply each component by the scalar. Thus if \(c\) is a scalar, then

    \[c \mathbf{A}=c A_{x} \mathbf{i}+c A_{y} \mathbf{j}+c A_{z} \mathbf{k} .\]

    For example, if \(\mathbf{A}=3 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}\), then \(7 \mathbf{A}=21 \mathbf{i}+35 \mathbf{j}+14 \mathbf{k}\).

    Dot Product

    It is possible to multiply a vector by another vector, but there is more than one kind of multiplication between vectors. One type of vector multiplication is called the dot product, in which a vector is multiplied by another vector to give a scalar result. The dot product (written with a dot operator, as in \(\mathbf{A} \cdot \mathbf{B}\) ) is

    \[\mathbf{A} \cdot \mathbf{B}=A B \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z},\]

    where \(\theta\) is the angle between vectors \(\mathbf{A}\) and \(\mathbf{B}\). For example, if \(\mathbf{A}=3 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}\) and \(\mathbf{B}=2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}\), then \(\mathbf{A} \cdot \mathbf{B}=6-5+8=9\).

    The dot product can be used to find the angle between two vectors. To do this, we solve Eq. (P.6) for \(\theta\) and find \(\cos \theta=\mathbf{A} \cdot \mathbf{B} /(A B)\). Applying this to the previous example, we get \(A=\sqrt{38}\) and \(B=\sqrt{21}\), so \(\cos \theta=9 /(\sqrt{38} \sqrt{21})\), and thus \(\theta=71.4^{\circ}\).

    An immediate consequence of Eq. (P.6) is that two vectors are perpendicular if and only if their dot product is zero.

    Cross Product

    clipboard_e75ef6c5c2b938fb2acd00601dd4f3687.png
    Figure \(\PageIndex{1}\): The vector cross product \(\mathbf{A} \times \mathbf{B}\) is perpendicular to the plane of \(\mathbf{A}\) and \(\mathbf{B}\), and in the right-hand sense. (Credit: “Connected Curriculum Project”, Duke University.)

    Another kind of multiplication between vectors, called the cross product, involves multiplying one vector by another and giving another vector as a result. The cross product is written with a cross operator, as in \(\mathbf{A} \times \mathbf{B}\). It is defined by

    \[
    \begin{aligned}
    \mathbf{A} \times \mathbf{B} & =(A B \sin \theta) \mathbf{u} \\
    & =\left|\begin{array}{ccc}
    \mathbf{i} & \mathbf{j} & \mathbf{k} \\
    A_{x} & A_{y} & A_{z} \\
    B_{x} & B_{y} & B_{z}
    \end{array}\right| \\
    & =\left(A_{y} B_{z}-A_{z} B_{y}\right) \mathbf{i}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \mathbf{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \mathbf{k},
    \end{aligned}
    \]

    where again \(\theta\) is the angle between the vectors, and \(\mathbf{u}\) is a unit vector pointing in a direction perpendicular to the plane containing \(\mathbf{A}\) and \(\mathbf{B}\), in a right-hand sense: if you curl the fingers of your right hand from \(\mathbf{A}\) into \(\mathbf{B}\), then the thumb of your right hand points in the direction of \(\mathbf{A} \times \mathbf{B}\) (Fig. P.1). As an example, if \(\mathbf{A}=3 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}\) and \(\mathbf{B}=2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}\), then \(\mathbf{A} \times \mathbf{B}=(20-(-2)) \mathbf{i}-(12-4) \mathbf{j}+(-3-10) \mathbf{k}=22 \mathbf{i}-8 \mathbf{j}-13 \mathbf{k}\).

    Rectangular and Polar Forms

    A two-dimensional vector may be written in either rectangular form \(\mathbf{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j}\) described earlier, or in polar form \(\mathbf{A}=A \angle \theta\), where \(A\) is the vector magnitude, and \(\theta\) is the direction measured counterclockwise from the \(+x\) axis. To convert from polar form to rectangular form, one finds

    \[
    \begin{aligned}
    & A_{x}=A \cos \theta \\
    & A_{y}=A \sin \theta
    \end{aligned}
    \]

    Inverting these equations gives the expressions for converting from rectangular form to polar form:

    \[
    \begin{aligned}
    A & =\sqrt{A_{x}^{2}+A_{y}^{2}} \\
    \tan \theta & =\frac{A_{y}}{A_{x}}
    \end{aligned}
    \]


    66.16: Vector Arithmetic is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.