Skip to main content
Physics LibreTexts

27.5: Compressibility of a Fluid

  • Page ID
    28630
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    When the pressure is uniform on all sides of an object in a fluid, the pressure will squeeze the object resulting in a smaller volume. When we increase the pressure by \(ΔP\) on a material of volume \(v_{o}\), then the volume of the material will change by \(ΔV < 0\) and consequently the density of the material will also change. Define the bulk stress by the increase in pressure change

    \[\sigma_{B} \equiv \Delta P \nonumber \]

    Define the bulk strain by the ratio

    \[\varepsilon_{B} \equiv \frac{\Delta V}{V_{0}} \nonumber \]

    For many materials, for small pressure changes, the bulk stress is linearly proportional to the bulk strain,

    \[\Delta P=-B \frac{\Delta V}{V_{0}} \label{27.5.3} \]

    where the constant of proportionality \(B\) is called the bulk modulus. The SI unit for bulk modulus is the pascal. If the bulk modulus of a material is very large, a large pressure change will result in only a small volume change. In that case the material is called incompressible. In Table 27.2, the bulk modulus is tabulated for various materials. \[\text {Table 27.2 Bulk Modulus for Various Materials} \nonumber \]

    \[\begin{array}{|l|l|}
    \hline \text { Material } & \text { Bulk Modulus, } Y \text { , (Pa) } \\
    \hline \text { Diamond } & 4.4 \times 10^{11} \\
    \hline \text { Iron } & 1.6 \times 10^{11} \\
    \hline \text { Nickel } & 1.7 \times 10^{11} \\
    \hline \text { Steel } & 1.6 \times 10^{11} \\
    \hline \text { Copper } & 1.4 \times 10^{11} \\
    \hline \text { Brass } & 6.0 \times 10^{10} \\
    \hline \text { Aluminum } & 7.5 \times 10^{10} \\
    \hline \text { Crown Glass } & 5.0 \times 10^{10} \\
    \hline \text { Lead } & 4.1 \times 10^{10} \\
    \hline \begin{array}{l}
    \text { Water (value increases } \\
    \text { at higher pressure) }
    \end{array} & 2.2 \times 10^{9} \\
    \hline \begin{array}{l}
    \text { Air (adiabatic bulk } \\
    \text { modulus) }
    \end{array} & 1.42 \times 10^{5} \\
    \hline \begin{array}{l}
    \text { Air (isothermal bulk } \\
    \text { modulus) }
    \end{array} & 1.01 \times 10^{5} \\
    \hline
    \end{array} \nonumber \]

    Example 27.3: Compressibility of Water

    Determine the percentage decrease in a fixed volume of water at a depth of 4 km where the pressure difference is 40 Mpa, with respect to sea level.

    Solution

    The bulk modulus of water is \(2.2 \times 10^{9} \text Pa\). From Equation \ref{27.5.3},

    \[\frac{\Delta V}{V_{0}}=-\frac{\Delta P}{B}=-\frac{40 \times 10^{6} \mathrm{Pa}}{2.2 \times 10^{9} \mathrm{Pa}}=-0.018. \nonumber \]

    There is only a 1.8% decrease in volume. Water is essentially incompressible even at great depths in ocean, justifying our assumption that the density of water is uniform in the ocean in Example 27.1.


    27.5: Compressibility of a Fluid is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.