Skip to main content
Physics LibreTexts

12.3: Rotating Reference Frame

  • Page ID
    9623
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Consider a rotating frame of reference which will be designated as the double-primed (rotating) frame to differentiate it from the non-rotating primed (moving) frame, since both of which may be undergoing translational acceleration relative to the inertial fixed unprimed frame as described in Figure \(12.2.1\).

    Spatial time derivatives in a rotating, non-translating, reference frame

    For simplicity assume that \(\mathbf{R}_{fix} = \mathbf{V}_{fix} = 0\), that is, the primed reference frame is stationary and identical to the fixed stationary unprimed frame. The double-primed (rotating) frame is a non-inertial frame rotating with respect to the origin of the fixed primed frame.

    10.3.1.PNG
    Figure \(\PageIndex{1}\): Infinitessimal displacement in the non rotating primed frame and in the rotating double-primed reference frame frame.

    Appendix \(19.4.2C\) shows that an infinitessimal rotation \(d\theta\) about an instantaneous axis of rotation leads to an infinitessimal displacement \(d\mathbf{r}^{R}\) where

    \[d\mathbf{r}^{R} = d \theta \times \mathbf{r}^{\prime}_{mov} \label{12.7}\]

    Consider that during a time \(dt\), the position vector in the fixed primed reference frame moves by an arbitrary infinitessimal distance \(d\mathbf{r}^{\prime}_{mov}\). As illustrated in Figure \(\PageIndex{1}\), this infinitessimal distance in the primed non-rotating frame can be split into two parts:

    1. \(d\mathbf{r}^{R} = d\theta \times \mathbf{r}^{\prime}_{mov}\) which is due to rotation of the rotating frame with respect to the translating primed frame.
    2. \((d\mathbf{r}^{\prime\prime}_{rot})\) which is the motion with respect to the rotating (double-primed) frame.

    That is, the motion has been arbitrarily divided into a part that is due to the rotation of the double-primed frame, plus the vector displacement measured in this rotating (double-primed) frame. It is always possible to make such a decomposition of the displacement as long as the vector sum can be written as

    \[d\mathbf{r}^{\prime}_{mov} = d\mathbf{r}^{\prime\prime}_{rot} + d\theta \times \mathbf{r}^{\prime}_{mov} \label{12.8}\]

    Since \(d\theta = \omega dt\) then the time differential of the displacement, Equation \ref{12.8}, can be written as

    \[\left( \frac{d\mathbf{r}^{\prime}}{dt}\right)_{mov} = \left(\frac{d\mathbf{r}^{\prime\prime}}{dt}\right)_{rot} + \omega \times \mathbf{r}^{\prime}_{mov} \label{12.9}\]

    The important conclusion is that a velocity measured in a non-rotating reference frame \(\left(\frac{d\mathbf{r}^{\prime}}{dt}\right)_{mov}\) can be expressed as the sum of the velocity \(\left(\frac{d\mathbf{r}^{\prime\prime}}{dt}\right)_{rot}\), measured relative to a rotating frame, plus the term \(\omega \times \mathbf{r}^{\prime}_{mov}\) which accounts for the rotation of the frame. The division of the \(d\mathbf{r}^{\prime}_{rot}\) vector into two parts, a part due to rotation of the frame plus a part with respect to the rotating frame, is valid for any vector as shown below.

    General vector in a rotating, non-translating, reference frame

    Consider an arbitrary vector \(\mathbf{G}\) which can be expressed in terms of components along the three unit vector basis \(\hat{\mathbf{e}}^{fix}_i\) in the fixed inertial frame as

    \[\mathbf{G} = \sum^{3}_{i=1} G^{fix}_i \hat{\mathbf{e}}_i^{fix} \label{12.10}\]

    Neglecting translational motion, then it can be expressed in terms of the three unit vectors in the non-inertial rotating frame unit vector basis \(\hat{\mathbf{e}}^{rot}_i\) as

    \[\mathbf{G} = \sum^{3}_{i=1} (G_i)_{rot} \hat{\mathbf{e}}^{rot}_i \label{12.11}\]

    Since the unit basis vectors \(\hat{\mathbf{e}}^{rot}_i\) are constant in the rotating frame, that is,

    \[\left(\frac{d\hat{\mathbf{e}}^{rot}_i}{dt}\right)_{rot} = 0 \label{12.12}\]

    then the time derivatives of \(\mathbf{G}\) in the rotating coordinate system \(\hat{\mathbf{e}}^{rot}_i\) can be written as

    \[\left(\frac{d\mathbf{G}}{dt}\right)_{rot} = \sum^3_{i-1} \left(\frac{dG_i}{dt}\right)_{rot} \hat{\mathbf{e}}^{rot}_i \label{12.13}\]

    The inertial-frame time derivative taken with components along the rotating coordinate basis \(\hat{\mathbf{e}}^{rot}_i\), Equation \ref{12.11}, is

    \[\left(\frac{d\mathbf{G}}{dt}\right)_{fix} = \sum^3_{i-1} \left(\frac{dG_i}{dt}\right)_{rot} \hat{\mathbf{e}}^{rot}_i + (G_i)_{rot} \frac{d\hat{\mathbf{e}}^{rot}_i }{dt} \label{12.14}\]

    Substitute the unit vector \(\hat{\mathbf{e}}^{rot}\) for \(\mathbf{r}^{\prime}_{mov}\) in Equation \ref{12.9}, plus using Equation \ref{12.12}, gives that

    \[\left(\frac{d\hat{\mathbf{e}}^{rot}}{dt}\right)_{fix} = \omega \times \hat{\mathbf{e}}^{rot} \label{12.15}\]

    Substitute this into the second term of Equation \ref{12.14} gives

    \[\left(\frac{d\mathbf{G}}{dt}\right)_{fix} = \left(\frac{d\mathbf{G}}{dt}\right)_{rot} + \omega \times \mathbf{G} \label{12.16}\]

    This important identity relates the time derivatives of any vector expressed in both the inertial frame and the rotating non-inertial frame bases. Note that the \(\omega \times \mathbf{G}\) term originates from the fact that the unit basis vectors of the rotating reference frame are time dependent with respect to the non-rotating frame basis vectors as given by Equation \ref{12.15}. Equation \ref{12.16} is used extensively for problems involving rotating frames. For example, for the special case where \(\mathbf{G} = \mathbf{r}^{\prime}\), then Equation \ref{12.16} relates the velocity vectors in the fixed and rotating frames as given in Equation \ref{12.9}.

    Another example is the vector \(\mathbf{\dot{\omega}}\)

    \[\mathbf{\dot{\omega}} = \left(\frac{d\omega}{dt}\right)_{fix} = \left(\frac{d\omega}{dt}\right)_{rot} + \omega \times \omega = \left(\frac{d\omega}{dt}\right)_{rot} = \mathbf{\dot{\omega}} \label{12.17}\]

    That is, the angular acceleration \(\dot{\omega}\) has the same value in both the fixed and rotating frames of reference.


    This page titled 12.3: Rotating Reference Frame is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.