Skip to main content
Physics LibreTexts

19.7: Finding the Eigenvalues

  • Page ID
    30312
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The eigenvalues are found by operating on the eigenvector we just found with the matrix, meaning the \(N\) dimensional generalization of

    \begin{equation}
    -m \Omega^{2}\left(\begin{array}{c}
    1 \\
    e^{i k_{n} a} \\
    e^{i k_{n} 2 a} \\
    e^{i k_{n} 3 a}
    \end{array}\right)=\left(\begin{array}{cccc}
    -2 \kappa & \kappa & 0 & \kappa \\
    \kappa & -2 \kappa & \kappa & 0 \\
    0 & \kappa & -2 \kappa & \kappa \\
    \kappa & 0 & \kappa & -2 \kappa
    \end{array}\right)\left(\begin{array}{c}
    1 \\
    e^{i k_{n} a} \\
    e^{i k_{n} 2 a} \\
    e^{i k_{n} 3 a}
    \end{array}\right)
    \end{equation}

    Applying the matrix to the column vector

    \begin{equation}
    \left(1, e^{i k_{n} a}, e^{2 i k_{n} a}, e^{3 i k_{n} a}, \ldots, e^{i(N-1) k_{n} a}\right)^{T}
    \end{equation}

    , and cancelling out the common \(e^{i k_{n} n a}\) factor, we have

    \begin{equation}
    -m \Omega_{n}^{2}=\kappa\left(e^{i k_{n} a}+e^{-i k_{n} a}-2\right)
    \end{equation}

    (Of course, this same result comes from every row.)

    The complete set of eigenvalues is given by inserting in the above expression

    \begin{equation}
    k_{n}=2 \pi n / N a, \quad n=0,1,2, \ldots, N-1 \text { so } e^{i k_{n} a}=e^{2 \pi i n / N}
    \end{equation}

    so \(n=0\) is displacement of the system as a whole, as is \(n=N\).

    Wavenumber values \(k_{n} \text { beyond } n=N\) repeats the eigenstates we already have, since

    \begin{equation}
    e^{i k_{N+n} a}=e^{i \frac{2 \pi(N+n) a}{N a}}=e^{2 \pi i} e^{2 \pi i n / N}=e^{2 \pi i n / N}=e^{i k_{n} a}
    \end{equation}

    k are restricted to

    \begin{equation}
    \Omega_{n}=2 \sqrt{\frac{\kappa}{m}} \sin \left(\frac{k_{n} a}{2}\right)=2 \sqrt{\frac{\kappa}{m}} \sin \left(\frac{n \pi}{N}\right)
    \end{equation}

    \begin{equation}
    0 \leq k<2 \pi / a
    \end{equation}

    or equivalently

    \begin{equation}
    -\pi / a<k \leq \pi / a
    \end{equation}

    The eigenvalue equation is

    \begin{equation}
    \Omega_{n}^{2}=2(\kappa / m)\left(1-\cos k_{n} a\right)
    \end{equation}

    or

    \begin{equation}
    \Omega_{n}=2 \sqrt{\frac{\kappa}{m}} \sin \left(\frac{k_{n} a}{2}\right)=2 \sqrt{\frac{\kappa}{m}} \sin \left(\frac{n \pi}{N}\right)
    \end{equation}

    To see the dynamics of this eigenstate

    \begin{equation}
    \left(1, e^{i k_{n} a}, e^{2 i k_{n} a}, e^{3 i k_{n} a}, \ldots, e^{i k_{n}(N-1) a}\right)
    \end{equation}

    , we need to multiply by the time dependence \(e^{i \Omega_{n} t}\), then finally take the real part of the solution:

    \begin{equation}
    \left(\cos \Omega_{n} t, \quad \cos \left(k_{n} a+\Omega_{n} t\right), \quad \cos \left(2 k_{n} a+\Omega_{n} t\right), \quad \cos \left(3 k_{n} a+\Omega_{n} t\right), \ldots, \cos \left((N-1) k_{n} a+\Omega_{n} t\right)\right)
    \end{equation}

    Notice that in the continuum limit, meaning large N and small a, the atom displacement as a function of position has the form \(\cos (k x+\Omega t)\) in other words we’re looking at a sinusoidal wave disturbance with wavenumber \(k_{n}\) here.

    Now, \(-k_{n}\) is also a solution, but that is the same as \(n^{\prime}=N-n\) so one must be careful not to overcount. The two frequencies \(\pm \Omega_{n}\) correspond to waves going in opposite directions.


    This page titled 19.7: Finding the Eigenvalues is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?