Skip to main content
Physics LibreTexts

19.7: Finding the Eigenvalues

  • Page ID
    30312
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The eigenvalues are found by operating on the eigenvector we just found with the matrix, meaning the \(N\) dimensional generalization of

    \begin{equation}
    -m \Omega^{2}\left(\begin{array}{c}
    1 \\
    e^{i k_{n} a} \\
    e^{i k_{n} 2 a} \\
    e^{i k_{n} 3 a}
    \end{array}\right)=\left(\begin{array}{cccc}
    -2 \kappa & \kappa & 0 & \kappa \\
    \kappa & -2 \kappa & \kappa & 0 \\
    0 & \kappa & -2 \kappa & \kappa \\
    \kappa & 0 & \kappa & -2 \kappa
    \end{array}\right)\left(\begin{array}{c}
    1 \\
    e^{i k_{n} a} \\
    e^{i k_{n} 2 a} \\
    e^{i k_{n} 3 a}
    \end{array}\right)
    \end{equation}

    Applying the matrix to the column vector

    \begin{equation}
    \left(1, e^{i k_{n} a}, e^{2 i k_{n} a}, e^{3 i k_{n} a}, \ldots, e^{i(N-1) k_{n} a}\right)^{T}
    \end{equation}

    , and cancelling out the common \(e^{i k_{n} n a}\) factor, we have

    \begin{equation}
    -m \Omega_{n}^{2}=\kappa\left(e^{i k_{n} a}+e^{-i k_{n} a}-2\right)
    \end{equation}

    (Of course, this same result comes from every row.)

    The complete set of eigenvalues is given by inserting in the above expression

    \begin{equation}
    k_{n}=2 \pi n / N a, \quad n=0,1,2, \ldots, N-1 \text { so } e^{i k_{n} a}=e^{2 \pi i n / N}
    \end{equation}

    so \(n=0\) is displacement of the system as a whole, as is \(n=N\).

    Wavenumber values \(k_{n} \text { beyond } n=N\) repeats the eigenstates we already have, since

    \begin{equation}
    e^{i k_{N+n} a}=e^{i \dfrac{2 \pi(N+n) a}{N a}}=e^{2 \pi i} e^{2 \pi i n / N}=e^{2 \pi i n / N}=e^{i k_{n} a}
    \end{equation}

    k are restricted to

    \begin{equation}
    \Omega_{n}=2 \sqrt{\dfrac{\kappa}{m}} \sin \left(\dfrac{k_{n} a}{2}\right)=2 \sqrt{\dfrac{\kappa}{m}} \sin \left(\dfrac{n \pi}{N}\right)
    \end{equation}

    \begin{equation}
    0 \leq k<2 \pi / a
    \end{equation}

    or equivalently

    \begin{equation}
    -\pi / a<k \leq \pi / a
    \end{equation}

    The eigenvalue equation is

    \begin{equation}
    \Omega_{n}^{2}=2(\kappa / m)\left(1-\cos k_{n} a\right)
    \end{equation}

    or

    \begin{equation}
    \Omega_{n}=2 \sqrt{\dfrac{\kappa}{m}} \sin \left(\dfrac{k_{n} a}{2}\right)=2 \sqrt{\dfrac{\kappa}{m}} \sin \left(\dfrac{n \pi}{N}\right)
    \end{equation}

    To see the dynamics of this eigenstate

    \begin{equation}
    \left(1, e^{i k_{n} a}, e^{2 i k_{n} a}, e^{3 i k_{n} a}, \ldots, e^{i k_{n}(N-1) a}\right)
    \end{equation}

    , we need to multiply by the time dependence \(e^{i \Omega_{n} t}\), then finally take the real part of the solution:

    \begin{equation}
    \left(\cos \Omega_{n} t, \quad \cos \left(k_{n} a+\Omega_{n} t\right), \quad \cos \left(2 k_{n} a+\Omega_{n} t\right), \quad \cos \left(3 k_{n} a+\Omega_{n} t\right), \ldots, \cos \left((N-1) k_{n} a+\Omega_{n} t\right)\right)
    \end{equation}

    Notice that in the continuum limit, meaning large N and small a, the atom displacement as a function of position has the form \(\cos (k x+\Omega t)\) in other words we’re looking at a sinusoidal wave disturbance with wavenumber \(k_{n}\) here.

    Now, \(-k_{n}\) is also a solution, but that is the same as \(n^{\prime}=N-n\) so one must be careful not to overcount. The two frequencies \(\pm \Omega_{n}\) correspond to waves going in opposite directions.


    This page titled 19.7: Finding the Eigenvalues is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?