Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

10.5: Oblique Incidence

( \newcommand{\kernel}{\mathrm{null}\,}\)

When a plane wave falls upon the plane interface between two media the incident and reflected wave-vectors define the plane of incidence, see Figures (10.4.6) and (10.5.7). The direction of the electric field vector in the incident wave may make an arbitrary angle with the plane of incidence. The general case may be treated as the sum of two special cases: an electric vector perpendicular to the plane of incidence (called s-polarized light from the German word for perpendicular, ”senkrecht”), and an electric vector which lies in the plane of incidence (p-polarized light).

Figure 10.7.PNG
Figure 10.5.7: A P-polarized plane wave incident at the angle θ on the plane interface between vacuum and an isotropic medium characterized by material parameters ϵr and µ0. The electric vector in the incident wave is parallel with the plane of incidence.

10.5.1 S-polarized Waves.

Consider first S-polarized waves, Figure (10.4.6). The incident wave electric vector can be described by the equation

Ey=E0exp(i[x(ksinθ)+z(kcosθ)ωt]),

where k = ω/c because this wave is incident on the interface from vacuum. Eventually one is going to have to ensure that the tangential components of the electric and magnetic fields are continuous across the interface, and these boundary conditions must hold at any particular time at all points on the interface. This requirement means that all the waves in this problem, both inside the material and on the vacuum side of the interface, must have the same spatial dependence on the co-ordinates which lie in the interface plane. For the present example, Figure (10.6), the incident wave varies with the in-plane co-ordinate like

exp(ixksinθ)=exp(ixωsinθ/c),

therefore this same factor must appear both in the reflected wave and in the transmitted wave that is generated in the region z>0. Since the reflected wave-vector has the same magnitude as the incident wave-vector, k = ω/c as determined by Maxwell’s equations, and since its x-component of the wavevector must be the same as for the incident wave, it follows that the angle of reflection must be the same as the angle of incidence as is shown in Figure (10.4.6). The electric vector of the reflected wave is given by

Ey=ERexp(i[xksinθzkcosθωt]).

(Note the change in the sign of the z-component of k). The magnetic field vector in the incident wave must be perpendicular both to the electric field vector and to the wave-vector:

H(i)x=H0cosθexp(i[xksinθ+zkcosθωt])H(i)z=H0sinθexp(i[x,ksinθ+zkcosθωt])

where H0 = E0/Z0, and Z0=cμ0=μ0/ϵ0=377 Ohms.  The magnetic field vector in the reflected wave must simultaneously be orthogonal to the reflected wave electric vector and also to the wave-vector:

H(R)x=HRcosθexp(i[xksinθzkcosθωt])H(R)z=HRsinθexp(i[xksinθzkcosθωt])

where HR = ER/Z0. Eqns.(10.5.4 and 10.5.6) satisfy Maxwell’s equations for the vacuum.

The electric field in the transmitted wave will be polarized along y because the material in the region z≥0 is assumed to be linear and isotropic so that a y-directed incident electric field will generate a y-directed transmitted electric field:

Ey=Aexp(i[xksinθ])exp(i[zkzωt]).

The Maxwell equation curl(H)=Bt=iωμ0H becomes

Eyz=iωμ0Hx,Eyx=iωμ0Hz.

The Maxwell equation curl(H)=Dt=iϵrϵ0ωE becomes

HxzHzx=iωϵrϵ0Ey.

Combine Equations (10.5.9) and (???) to obtain

2Eyz2+2Eyx2=(ωc)2ϵrEy.

This equation requires that

k2z+k2sin2θ=ϵr(ωc)2,

or, since k = ω/c,

k2z=[ϵrsin2θ](ωc)2.

The z-component of the transmitted wave-vector must therefore be calculated from

kz=[ϵrsin2θ](ωc),

where the imaginary part of kz must be chosen to be positive in order that the wave (???) be damped out as the wave travels along the z -direction. The wave-vector component kz will in general be a complex number corresponding to the fact that the relative dielectric constant, ϵr=ϵR+iϵI, is a complex number: here ϵR and ϵI I are both real numbers. A complex index of refraction can be defined for the case of oblique incidence by setting

kz=(nθ+iκθ)(ωc).

the parameters nθ and κθ are explicit functions of the angle of incidence. The electric field transmitted into the material on the right of z=0 will be given by

Ey=Aexp(i[xksinθ])exp(κθωz/c)exp(i[nθωzcωt]),

and from Equations (10.5.9) the magnetic field components are given by

Hx=(nθ+iκθ)Z0.Aexp(i[xksinθ])exp(κθωz/c)exp(i[nθωzcωt]),Hz=sinθZ0Aexp(i[xksinθ])exp(κθωz/c)exp(i[nθωzcωt]),

where Z0=cμ0=377 Ohms.  The planes of constant amplitude are parallel with the plane interface. The planes of constant phase are tilted at an angle ϕ with respect to the interface plane. The wave-vector in the material, which is perpendicular to the planes of constant phase, has components that are given by

kx=(ωc)sinθ,

and

Real(kz)=nθ(ωc),

therefore the tilt angle ϕ illustrated in Figure (10.4.6) can be calculated from

tanϕ=sinθnθ.

In cases for which the dielectric constant can be taken to be real, i.e. negligible losses, one has

km=[k2sin2θ+k2z]=ϵr(ωc).

Then

sinϕ=ksinθϵr(ω/c)=sinθϵr.

This is just Snell’s law:

sinθ=ϵrsinϕ.

For this case a real index of refraction can be defined for the medium, n=ϵr, and the phase velocity of the wave in the medium is c/n; the refracted wave propagates in the direction specified by the angle ϕ obtained from Snell’s law. In the more general case of a lossy medium the angle between the surfaces of constant phase and the boundary surface must be calculated from Equation (???).

At z=0 the tangential components of E and H must be continuous across the interface and this condition determines the amplitudes of the reflected and transmitted waves. One finds

E0+ER=A,

and

H0cosθ+HRcosθ=(nθ+iκθ)Z0A,

or, since H0 = E0/Z0 and HR = ER/Z0

E0+ER=(nθ+iκθ)cosθA.

The parameters nθ and κθ are defined by equations (???) and (???). The two equations, (???) and (???), can be solved for the amplitudes ER and A in terms of the incident wave amplitude E0.

AE0=2cosθ[cosθ+(nθ+iκθ)],ERE0=(cosθ(nθ+iκθ)cosθ+(nθ+iκθ)),

where, it will be recalled,

(nθ+iκθ)=ϵrsin2θ,

and the sign must be chosen so that κθ>0.

10.5.2 P-polarized Waves.

Arguments for P-polarized light are similar to those for S-polarized light. However, for P-polarized radiation the magnetic field is polarized perpendicular to the plane of incidence, Figure (10.5.7). The incident wave can be written

Hincy=H0exp(i[xksinθ+zkcosθωt]),

Eincx=Z0H0cosθexp(i[xksinθ+zkcosθωt]),

ERz=Z0HRsinθexp(i[xksinθzkcosθωt]),

and for the reflected wave:

HRy=HRexp(i[xksinθzkcosθωt]),

ERx=Z0HRcosθexp(i[xksinθzkcosθωt]),

ERz=Z0HRsinθexp(i[xksinθzkcosθωt]).

Inside the material, z≥0, which is assumed to be characterized by a complex relative dielectric constant ϵr, one finds from

curl(H)=iωϵrϵ0E,

Hyz=iωϵrϵ0Ex,

Hyx=iωϵrϵ0Ez,

and from

curl(E)=Bt=iωμ0H,

ExzEzx=iωμ0Hy.

Equations (???) and (???) can be combined to give

2Hyx2+2Hyz2=ϵr(ωc)2Hy.

The solution of Equation (???) can be written

Hy=HTexp(i[xksinθ+zkzωt]),

where

k2sin2θ+k2z=ϵr(ωc)2.

In these Equations k=(ω/c). Equation (???) for kz is the same as that which was obtained for the case of an incident S-polarized wave. Solving for kz one obtains:

kz=[ϵrsin2θ](ωc),

or

kz=(nθ+iκθ)(ωc),

where

nθ+iκθ=[ϵrsin2θ],

and the sign of the square root must be chosen so as to make the imaginary part of kz positive in order to describe an optical disturbance that is attenuated as z increases.

From the form of the magnetic field, Equation (???), and from the Maxwell Equations (???), it follows that

Ex=(nθ+iκθ)ϵrZ0HTexp(ixksinθ)exp(κθωz/c)exp(i[nθωzcωt]),

Ez=sinθϵrZ0HTexp(ixksinθ)exp(κθωz/c)exp(i[nθωzcωt]).

And from the boundary conditions at z=0 (continuity of the tangential components of E and H) one finds:

H0+HR=HT,

Z0H0cosθZ0HRcosθ=(nθ+iκθ)ϵrZ0HT,

or

H0HR=(nθ+iκθ)ϵrcosθHT.

These two equations can be solved to obtain

HTH0=2ϵrcosθ(ϵrcosθ+(nθ+iκθ)),

HRH0=(ϵrcosθ(nθ+iκθ)ϵrcosθ+(nθ+iκθ)),

where (nθ+iκθ)=[ϵrsin2θ] and κθ>0.

Notice that div(D)=0 for both the S- and P-polarized waves. This is obvious for the S-polarized light because the electric field has only a y-component and this component does not depend upon the y co-ordinate, Equation (???). For P-polarized radiation, from Equations (???),

Exx+Ezz=0,

so that div(E)=0 and, since D=ϵrϵ0E, so also div(D)=0. There are no free charges set up in the material for either S- or P-polarized radiation. The condition div(D)=0 can also be deduced directly from the Maxwell’s equation

curl(H)=Dt=iωD,

because the divergence of any curl is zero. It is easy to show by direct calculation that the normal component of the magnetic field B is continuous across the surface of the dielectric material for both S- and P-polarized radiation.

10.5.3 Oblique Incidence on a Lossless Material.

For a material in which the losses are very small so that the imaginary part of the dielectric constant can be neglected, a real index of refraction can be defined by

n=ϵr.

For S-polarized radiation the reflection and transmission coefficients, Equations (10.5.29), become

RS=ERE0=(cosθncosϕcosθ+ncosϕ),

TS=ETE0=(2cosθcosθ+ncosϕ),

where sinϕ=sinθ/n.

For P-polarized radiation, and n=ϵr a real number, the reflection and transmission coefficients (???) become

RP=HRH0=(ncosθcosϕncosθ+cosϕ),

TP=HTH0=(2ncosθncosθ+cosϕ),

where, as above, sin ϕ = sin θ/n and n=ϵr. The relation

nθ=n2sin2θ=ncosϕ

has also been used.


This page titled 10.5: Oblique Incidence is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by John F. Cochran and Bretislav Heinrich.

Support Center

How can we help?