# 16.1: Exercises - Mainly revision

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

You will need to consult your notes from Junior Honours Quantum Mechanics and/or one of the many textbooks on Quantum Mechanics.

1. Given the expansion of an arbitrary wavefunction or state vector as a linear superposition of eigenstates of the operator $$\hat{A}$$

$\Psi (\underline{r}, t) = \sum_i c_i(t) u_i(\underline{r}) \quad \text{ or } \quad |\Psi , t \rangle = \sum_i c_i(t)|u_i \rangle \nonumber$

use the orthonormality properties of the eigenstates to prove that

$c_i(t) = \int u^*_i (\underline{r}) \Psi (\underline{r}, t) d^3 r \quad \text{ or } \quad c_i(t) = \langle u_i |\Psi , t \rangle \nonumber$

Work through the proof in both wavefunction and Dirac notations.

The state $$|\Psi , t\rangle$$ is said to be normalised if $$\langle \Psi , t|\Psi , t \rangle = 1$$. Show that this implies that

$\sum_i |c_i(t)|^2 = 1 \nonumber$

Hint: use the expansion $$|\Psi , t \rangle = \sum_i c_i(t)|u_i\rangle$$ and the corresponding conjugate expansion $$\langle \Psi , t| = \sum_j c^*_j (t) \langle u_j |$$.

If the expectation value $$\langle \hat{A} \rangle_t = \langle \Psi , t|\hat{A}|\Psi , t \rangle$$, show by making use of the same expansions that

$\langle \hat{A} \rangle_t = \sum_i |\langle u_i |\Psi , t \rangle|^2 A_i \nonumber$

and give the physical interpretation of this result.

2. The observables $$\mathcal{A}$$ and $$\mathcal{B}$$ are represented by operators $$\hat{A}$$ and $$\hat{B}$$ with eigenvalues $$\{A_i\}$$, $$\{B_i\}$$ and eigenstates $$\{|u_i \rangle \}$$, $$\{|v_i \rangle \}$$ respectively, such that

$|v_1 \rangle = \{ \sqrt{3} |u_1\rangle + |u_2 \rangle \}/2 \nonumber$

$|v_2 \rangle = \{|u_1\rangle − \sqrt{3} |u_2 \rangle \}/2 \nonumber$

$|v_n \rangle = |u_n\rangle , \quad n \geq 3. \nonumber$

Show that if $$\{|u_i\rangle \}$$ is an orthonormal basis then so is $$\{|v_i \rangle \}$$. A certain system is subjected to three successive measurements:

(1) a measurement of $$\mathcal{A}$$ followed by

(2) a measurement of $$\mathcal{B}$$ followed by

(3) another measurement of $$\mathcal{A}$$

Show that if measurement (1) yields any of the values $$A_3, A_4, ...$$ then (3) gives the same result but that if (1) yields the value $$A_1$$ there is a probability of $$\frac{5}{8}$$ that (3) will yield $$A_1$$ and a probability of $$\frac{3}{8}$$ that it will yield $$A_2$$. What may be said about the compatibility of $$\mathcal{A}$$ and $$\mathcal{B}$$?

3. The normalised energy eigenfunction of the ground state of the hydrogen atom $$(Z = 1)$$ is

$u_{100}(\underline{r}) = R_{10}(r)Y_{00}(\theta , \phi ) = C \text{ exp}(−r/a_0) \nonumber$

where $$a_0$$ is the Bohr radius and $$C$$ is a normalisation constant. For this state

(a) Calculate the normalisation constant, $$C$$, by noting the useful integral

$\int^{\infty}_0 \text{ exp}(−br) r^n dr = n!/b^{n+1}, \quad n > −1 \nonumber$

Alternatively, you can use the computer algebra program Maple if you know how to!

(b) Determine the radial distribution function, $$D_{10}(r) \equiv r^2 |R_{10}(r)|^2$$, and sketch its behavior; determine the most probable value of the radial coordinate, $$r$$, and the probability that the electron is within a sphere of radius $$a_0$$; recall that $$Y_{00}(\theta , \phi ) = 1/ \sqrt{4\pi}$$; again, you can use Maple to help you if you know how.

(c) Calculate the expectation value of $$r$$.

(d) Calculate the expectation value of the potential energy, $$V (r)$$.

(e) Calculate the uncertainty, $$\Delta r$$, in $$r$$ (i.e. $$\sqrt{ \langle r^2 \rangle − \langle r \rangle^2}$$).

4. At $$t = 0$$, a particle has a wavefunction $$\psi (x, y, z) = A z \text{ exp}[−b(x^2 + y^2 + z^2 )]$$, where $$A$$ and $$b$$ are constants.

(a) Show that this wavefunction is an eigenstate of $$\hat{L}^2$$ and of $$\hat{L}_z$$ and find the corresponding eigenvalues.

Hint: express $$\psi$$ in spherical polars and use the spherical polar expressions for $$\hat{L}^2$$ and $$\hat{L}_z$$.

$\hat{L}^2 = −\hbar^2 \left[ \frac{1}{\sin \theta} \frac{\partial}{ \partial \theta} \left( \sin \theta \frac{ \partial}{ \partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{ \partial^2}{\partial \phi^2} \right] \nonumber$

$\hat{L}_z = −i\hbar \frac{ \partial}{\partial \phi} \nonumber$

(b) Sketch the function, e.g. with a contour plot in the x=0 plane.

(c) Can you identify the Hamiltonian for which this is an energy eigenstate ?

This page titled 16.1: Exercises - Mainly revision is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform.