Skip to main content
Physics LibreTexts

16.2: Exercises - Perturbations

  • Page ID
    28725
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    An asterisk denotes a harder problem, which you are nevertheless encouraged to try!

    The following trigonometric identities may prove useful in the first two questions:

    \[\cos^2 A \equiv 1 − \sin^2 A \nonumber\]

    \[\sin 2A \equiv 2 \sin A \cos A \nonumber\]

    \[\sin A \sin B \equiv \frac{1}{2} [\cos (A − B) − \cos (A + B)] \nonumber\]

    \[\cos A \cos B \equiv \frac{1}{2} [\cos (A − B) + \cos (A + B)] \nonumber\]

    1. A quantum dot is a self assembled nanoparticle in which a single electron state can be confined. A model for such an object is a particle moving in one dimension in the potential

    \[V (x) = \infty , \quad |x| > a, \quad V (x) = V_0 \cos (\pi x/2a), \quad |x| \leq a \nonumber\]

    Identify an appropriate unperturbed system and perturbation term.

    Calculate the energies of the two lowest states to first order in perturbation theory.

    What is the sign of \(V_0\)?

    State two ways in which the colour of a material containing dots can be shifted towards the red.

    2. A particle moves in one dimension in the potential

    \[V (x) = \infty , \quad |x| > a, \quad V (x) = V_0 \sin(\pi x/a), |x| \leq a \nonumber\]

    • show that the first order energy shift is zero;
    • *obtain the expression for the second order correction to the energy of the ground state,

    \[ \boxed{\Delta E_{1}^{(2)}=-\left(\frac{32 V_{0}}{15 \pi}\right)^{2} \frac{8 m a^{2}}{3 \pi^{2} \hbar^{2}}-\left(\frac{64 V_{0}}{105 \pi}\right)^{2} \frac{8 m a^{2}}{15 \pi^{2} \hbar^{2}}-\ldots} \nonumber\]

    3. The 1-d anharmonic oscillator: a particle of mass m is described by the Hamiltonian

    \[\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 + \gamma \hat{x}^4 \nonumber\]

    • Assuming that \(\gamma\) is small, use first-order perturbation theory to calculate the ground state energy;
    • *show more generally that the energy eigenvalues are approximately

    \[E_n \simeq (n + \frac{1}{2} )\hbar \omega + 3\gamma \left( \frac{\hbar}{2m\omega} \right)^2 (2n^2 + 2n + 1) \nonumber\]

    Hint: to evaluate matrix elements of powers of \(\hat{x}\), write \(\hat{x}\) in terms of the harmonic oscillator raising and lowering operators \(\hat{a}\) and \(\hat{a}^{\dagger}\). Recall that the raising and lowering operators are defined by

    \[\hat{a} \equiv \sqrt{\frac{m\omega}{2\hbar}} \hat{x} + \frac{i}{\sqrt{2m\omega \hbar}} \hat{p} \quad \text{ and } \quad \hat{a}^{\dagger} \equiv \sqrt{\frac{m\omega}{2\hbar}} \hat{x} − \frac{i}{\sqrt{2m\omega \hbar}} \hat{p} \nonumber\]

    with the properties that

    \[\hat{a}|n \rangle = \sqrt{n} |n − 1\rangle \quad \text{ and } \quad \hat{a}^{\dagger} |n \rangle = \sqrt{n + 1} |n + 1 \rangle \nonumber\]

    4. A 1-dimensional harmonic oscillator of mass \(m\) carries an electric charge, \(q\). A weak, uniform, static electric field of magnitude \(\mathcal{E}\) is applied in the \(x\)-direction. Write down an expression for the classical electrostatic potential energy for a point particle at x.

    The quantum operator is given by the same expression with \(x \rightarrow \hat{x}\). By considering the symmetry of the integrals, or otherwise, how that, to first order in perturbation theory, the oscillator energy levels are unchanged, and calculate the second-order shift. Can you show that the second-order result is in fact exact?

    Hint: to evaluate matrix elements of \(\hat{x}\), write \(\hat{x}\) in terms of the harmonic oscillator raising and lowering operators \(\hat{a}\) and \(\hat{a}^{\dagger}\) and use the results \(\hat{a}|n \rangle = \sqrt{ n}|n − 1 \rangle\) and \(\hat{a}^{\dagger} |n \rangle = \sqrt{n + 1}|n + 1 \rangle\). To obtain an exact solution, change variables to complete the square in the potential and show it remains a harmonic oscillator.

    5. Starting from the relativistic expression for the total energy of a single particle, \(E = (m^2 c^4 + p^2 c^2 )^{1/2}\), and expanding in powers of \(p^2\), obtain the leading relativistic correction to the kinetic energy, for a plane wavefunction \(\Phi (x) = A \cos(kx)\), and determine whether \(\Phi (x)\) is an eigenstate for a relativistic free particle. Hint For normalisation of the wavefunction, it helps to keep the integral form for \(|A|^{−2} = \int \cos^2 kxdx\).


    This page titled 16.2: Exercises - Perturbations is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?