Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

4.8: Selected Examples

( \newcommand{\kernel}{\mathrm{null}\,}\)




























































































































































































































































































































\( \newcommand\Dalpha

ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[1], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dbeta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[2], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dgamma
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[3], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Ddelta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[4], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Depsilon
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[5], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dvarepsilon
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[6], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dzeta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[7], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Deta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[8], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dtheta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[9], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dvartheta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[10], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Diota
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[11], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dkappa
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[12], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dlambda
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[13], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)





\( \newcommand\Dvarpi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[14], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)











\( \newcommand\DGamma
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[15], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\DDelta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[16], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\DTheta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[17], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)









































































\( \newcommand\Vmu
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[18], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vnu
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[19], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vxi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[20], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vom
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[21], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vpi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[22], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vvarpi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[23], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vrho
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[24], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vvarrho
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[25], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vsigma
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[26], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vvarsigma
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[27], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vtau
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[28], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vupsilon
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[29], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vphi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[30], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vvarphi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[31], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vchi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[32], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vpsi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[33], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vomega
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[34], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\VGamma
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[35], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)
\( \newcommand\VDelta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[36], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)

















\newcommand\BI{\mib I}}










































\)










































































\newcommand { M}

























\newcommand { m}














































}


















\( \newcommand\tcb{\textcolor{blue}\)
\( \newcommand\tcr{\textcolor{red}\)



































1$#1_$






















































































\newcommand\SZ{\textsf Z}} \( \newcommand\kFd{k\ns_{\RF\dar}\)

\newcommand\mutB{\tilde\mu}\ns_\ssr{B}



\( \newcommand\xhihOZ
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/span[1], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)



\( \newcommand\labar
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/span[2], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.08:_Selected_Examples), /content/body/p/span, line 1, column 23
\)





















Spins in an External Magnetic Field

Consider a system of NS spins, each of which can be either up (σ=+1) or down (σ=1). The Hamiltonian for this system is

ˆH=μ0HNSj=1σj ,

where now we write ˆH for the Hamiltonian, to distinguish it from the external magnetic field H, and μ0 is the magnetic moment per particle. We treat this system within the ordinary canonical ensemble. The partition function is

Z=σ1σNSeβˆH=ζNS ,

where ζ is the single particle partition function:

ζ=σ=±1eμ0Hσ/kBT=2cosh(μ0HkBT) .

The Helmholtz free energy is then

F(T,H,NS)=kBTlnZ=NSkBTln[2cosh(μ0HkBT)] .

The magnetization is

M=(FH)T,NS=NSμ0tanh(μ0HkBT) .

The energy is

E=β(βF)=NSμ0Htanh(μ0HkBT) .

Hence, E=HM, which we already knew, from the form of ˆH itself.

Each spin here is independent. The probability that a given spin has polarization σ is

Pσ=eβμ0Hσeβμ0H+eβμ0H .

The total probability is unity, and the average polarization is a weighted average of σ=+1 and σ=1 contributions:

P+P=1,σ=PP=tanh(μ0HkBT) .

At low temperatures Tμ0H/kB, we have P1e2μ0H/kBT. At high temperatures T>μ0H/kB, the two polarizations are equally likely, and Pσ12(1+σμ0HkBT).

The isothermal magnetic susceptibility is defined as

χT=1NS(MH)T=μ20kBTsech2(μ0HkBT) .

(Typically this is computed per unit volume rather than per particle.) At H=0, we have χT=μ20/kBT, which is known as the Curie law.

Aside

The energy E=HM here is not the same quantity we discussed in our study of thermodynamics. In fact, the thermodynamic energy for this problem vanishes! Here is why. To avoid confusion, we’ll need to invoke a new symbol for the thermodynamic energy, E. Recall that the thermodynamic energy E is a function of extensive quantities, meaning E=E(S,M,NS). It is obtained from the free energy F(T,H,NS) by a double Legendre transform:

E(S,M,NS)=F(T,H,NS)+TS+HM .

Now from Equation ??? we derive the entropy

S=FT=NSkBln[2cosh(μ0HkBT)]NSμ0HTtanh(μ0HkBT) .

Thus, using Equations ??? and ???, we obtain E(S,M,NS)=0.

The potential confusion here arises from our use of the expression F(T,H,NS). In thermodynamics, it is the Gibbs free energy G(T,p,N) which is a double Legendre transform of the energy: G=ETS+pV. By analogy, with magnetic systems we should perhaps write G=ETSHM, but in keeping with many textbooks we shall use the symbol F and refer to it as the Helmholtz free energy. The quantity we’ve called E in Equation ??? is in fact E=EHM, which means E=0. The energy E(S,M,NS) vanishes here because the spins are noninteracting.

Negative Temperature (!)

Consider again a system of NS spins, each of which can be either up (+) or down (). Let Nσ be the number of sites with spin σ, where σ=±1. Clearly N++N=NS. We now treat this system within the microcanonical ensemble.

clipboard_e2a557dd2d14dddab4f975f2de25dbf82.png
Figure 4.8.1: When entropy decreases with increasing energy, the temperature is negative. Typically, kinetic degrees of freedom prevent this peculiarity from manifesting in physical systems.

The energy of the system is

E=HM ,

where H is an external magnetic field, and M=(N+N)μ0 is the total magnetization. We now compute S(E) using the ordinary canonical ensemble. The number of ways of arranging the system with N+ up spins is

Ω=(NSN+) ,

hence the entropy is

S=kBlnΩ=NSkB{xlnx+(1x)ln(1x)}

in the thermodynamic limit: NS, N+, x=N+/NS constant. Now the magnetization is M=(N+N)μ0=(2N+NS)μ0, hence if we define the maximum energy E0NSμ0H, then

EE0=MNSμ0=12xx=E0E2E0 .

We therefore have

S(E,NS)=NSkB[(E0E2E0)ln(E0E2E0)+(E0+E2E0)ln(E0+E2E0)] .

We now have

1T=(SE)NS=SxxE=NSkB2E0ln(E0EE0+E) .

We see that the temperature is positive for E0E<0 and is negative for 0<EE0.

What has gone wrong? The answer is that nothing has gone wrong – all our calculations are perfectly correct. This system does exhibit the possibility of negative temperature. It is, however, unphysical in that we have neglected kinetic degrees of freedom, which result in an entropy function S(E,NS) which is an increasing function of energy. In this system, S(E,NS) achieves a maximum of Smax=NSkBln2 at E=0 ( x=12), and then turns over and starts decreasing. In fact, our results are completely consistent with Equation ???: the energy E is an odd function of temperature. Positive energy requires negative temperature! Another example of this peculiarity is provided in the appendix in §11.2.

Adsorption

PROBLEM: A surface containing NS adsorption sites is in equilibrium with a monatomic ideal gas. Atoms adsorbed on the surface have an energy Δ and no kinetic energy. Each adsorption site can accommodate at most one atom. Calculate the fraction f of occupied adsorption sites as a function of the gas density n, the temperature T, the binding energy Δ, and physical constants.

The grand partition function for the surface is

Ξsurf=eΩsurf/kBT=NSj=0(NSj)ej(μ+Δ)/kBT=(1+eμ/kBTeΔ/kBT)NS .

The fraction of occupied sites is

f=ˆNsurfNS=1NSΩsurfμ=eμ/kBTeμ/kBT+eΔ/kBT .

Since the surface is in equilibrium with the gas, its fugacity z=exp(μ/kBT) and temperature T are the same as in the gas.

SOLUTION: For a monatomic ideal gas, the single particle partition function is ζ=Vλ3T, where λT=2π2/mkBT is the thermal wavelength. Thus, the grand partition function, for indistinguishable particles, is

Ξgas=exp(Vλ3Teμ/kBT) .

The gas density is

n=ˆNgasV=1VΩgasμ=λ3Teμ/kBT .

We can now solve for the fugacity: z=eμ/kBT=nλ3T. Thus, the fraction of occupied adsorption sites is

f=nλ3Tnλ3T+eΔ/kBT .

Interestingly, the solution for f involves the constant .

It is always advisable to check that the solution makes sense in various limits. First of all, if the gas density tends to zero at fixed T and Δ, we have f0. On the other hand, if n we have f1, which also makes sense. At fixed n and T, if the adsorption energy is (Δ), then once again f=1 since every adsorption site wants to be occupied. Conversely, taking (Δ)+ results in n0, since the energetic cost of adsorption is infinitely high.

clipboard_e2a6fbc0dae883950a287168926f05156.png
Figure 4.8.2: The monomers in wool are modeled as existing in one of two states. The low energy undeformed state is A, and the higher energy deformed state is B. Applying tension induces more monomers to enter the B state.

Elasticity of wool

Wool consists of interlocking protein molecules which can stretch into an elongated configuration, but reversibly so. This feature gives wool its very useful elasticity. Let us model a chain of these proteins by assuming they can exist in one of two states, which we will call A and B, with energies \boldsymbol{\ve\subA} and \boldsymbol{\ve\subB} and lengths \boldsymbol{\ell\subA} and \boldsymbol{\ell\subB}. The situation is depicted in Figure 4.8.2. We model these conformational degrees of freedom by a spin variable σ=±1 for each molecule, where σ=+1 in the A state and σ=1 in the B state. Suppose a chain consisting of N monomers is placed under a tension τ. We then have

\boldsymbol{\HH=\sum_{j=1}^N \Big[\ve\subA\,\delta\ns_{\sigma\ns_j,+1} + \ve\subB\,\delta\ns_{\sigma\ns_j,-1}\Big]\ .}

Similarly, the length is

\boldsymbol{\HL=\sum_{j=1}^N \Big[\ell\subA\,\delta\ns_{\sigma\ns_j,+1} + \ell\subB\,\delta\ns_{\sigma\ns_j,-1}\Big]\ .}

The Gibbs partition function is Y=TreˆK/kBT, with ˆK=ˆHτˆL :

\boldsymbol{\HK=\sum_{j=1}^N \Big[\vet\subA\,\delta\ns_{\sigma\ns_j,+1} + \vet\subB\,\delta\ns_{\sigma\ns_j,-1}\Big]\ ,}

where \boldsymbol{\vet\subA\equiv\ve\subA-\tau\ell\subA} and \boldsymbol{\vet\subB\equiv\ve\subB-\tau\ell\subB}. At τ=0 the A state is preferred for each monomer, but when τ exceeds τ, defined by the relation \boldsymbol{\vet\subA=\vet\subB}, the B state is preferred. One finds

\boldsymbol{\tau^*={\ve\subB-\ve\subA\over\ell\subB-\ell\subA}\ .}

clipboard_e76c2b3ef5d42e14c9d8951b4086f226d.png
Figure 4.8.3: Upper panel: length L(τ,T) for kBT/˜ε=0.01 (blue), 0.1 (green), 0.5 (dark red), and 1.0 (red). Bottom panel: dimensionless force constant k/N(Δ)2 versus temperature.

Once again, we have a set of N noninteracting spins. The partition function is Y=ζN, where ζ is the single monomer partition function, ζ=Treβˆh, where

\boldsymbol{\Hh=\vet\subA\,\delta\ns_{\sigma\ns_j,1} + \vet\subB\,\delta\ns_{\sigma\ns_j,-1}}

is the single “spin" Hamiltonian. Thus,

ζ=Treβˆh=eβ˜εA+eβ˜εB ,

It is convenient to define the differences

\boldsymbol{\RDelta\ve=\ve\subB-\ve\subA\quad,\quad \RDelta\ell=\ell\subB-\ell\subA\quad,\quad \RDelta\vet=\vet\subB-\vet\subA}

in which case the partition function Y is

\boldsymbol{\begin{aligned} Y(T,\tau,N)&=e^{-N\beta\,\vet\ns_\RA}\Big[1+e^{-\beta\RDelta\vet}\Big]^N\\ G(T,\tau,N)&=N\vet\subA - N\kT\ln\!\Big[1+e^{-\RDelta\vet/\kT}\Big]\end{aligned}}

The average length is

\boldsymbol{\begin{split} L=\langle \HL\rangle &= -\pabc{G}{\tau}{T,N}\\ &=N\ell\subA + {N\RDelta\ell\over e^{(\RDelta\ve-\tau\RDelta\ell)/\kT}+1}\ . \end{split}}

The polymer behaves as a spring, and for small τ the spring constant is

k=τL|τ=0=4kBTN(Δ)2cosh2(Δε2kBT) .

The results are shown in Figure 4.8.3. Note that length increases with temperature for τ<τ and decreases with temperature for τ>τ. Note also that k diverges at both low and high temperatures. At low T, the energy gap Δε dominates and \boldsymbol{L=N\ell\ns_\ssr{A}}, while at high temperatures kBT dominates and \boldsymbol{L=\half N(\ell\ns_\ssr{A}+\ell\ns_\ssr{B})}.

Noninteracting spin dimers

Consider a system of noninteracting spin dimers as depicted in Figure 4.8.4. Each dimer contains two spins, and is described by the Hamiltonian

ˆHdimer=Jσ1σ2μ0H(σ1+σ2) .

Here, J is an interaction energy between the spins which comprise the dimer. If J>0 the interaction is ferromagnetic, which prefers that the spins are aligned. That is, the lowest energy states are |↑↑ and |↓↓. If J<0 the interaction is antiferromagnetic, which prefers that spins be anti-aligned: |↑↓ and |↓↑.9

Suppose there are Nd dimers. Then the OCE partition function is Z=ζNd, where ζ(T,H) is the single dimer partition function. To obtain ζ(T,H), we sum over the four possible states of the two spins, obtaining

ζ=TreˆHdimer/kBT=2eJ/kBT+2eJ/kBTcosh(2μ0HkBT) .

Thus, the free energy is

F(T,H,Nd)=NdkBTln2NdkBTln[eJ/kBT+eJ/kBTcosh(2μ0HkBT)] .

The magnetization is

M=(FH)T,Nd=2Ndμ0eJ/kBTsinh(2μ0HkBT)eJ/kBT+eJ/kBTcosh(2μ0HkBT)

It is instructive to consider the zero field isothermal susceptibility per spin,

χT=12NdMH|H=0=μ20kBT2eJ/kBTeJ/kBT+eJ/kBT .

The quantity μ20/kBT is simply the Curie susceptibility for noninteracting classical spins. Note that we correctly recover the Curie result when J=0, since then the individual spins comprising each dimer are in fact noninteracting. For the ferromagnetic case, if JkBT, then we obtain

χT(JkBT)2μ20kBT .

This has the following simple interpretation. When JkBT, the spins of each dimer are effectively locked in parallel. Thus, each dimer has an effective magnetic moment μeff=2μ0. On the other hand, there are only half as many dimers as there are spins, so the resulting Curie susceptibility per spin is 12×(2μ0)2/kBT.

clipboard_e9c507b8a8058b16c837216e1aab6b277.png
Figure 4.8.4: A model of noninteracting spin dimers on a lattice. Each red dot represents a classical spin for which σj=±1.

When JkBT, the spins of each dimer are effectively locked in one of the two antiparallel configurations. We then have

χT(JkBT)2μ20kBTe2|J|/kBT .

In this case, the individual dimers have essentially zero magnetic moment.


This page titled 4.8: Selected Examples is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.

Support Center

How can we help?