$$\require{cancel}$$

# 23.7: Small Oscillations

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

Any object moving subject to a force associated with a potential energy function that is quadratic will undergo simple harmonic motion,

$U(x)=U_{0}+\frac{1}{2} k\left(x-x_{e q}\right)^{2}$

where k is a “spring constant”, $$x_{e q}$$ is the equilibrium position, and the constant $$U_{0}$$ just depends on the choice of reference point $$x_{r e f}$$ for zero potential energy, $$U\left(x_{r e f}\right)=0$$,

$0=U\left(x_{r e f}\right)=U_{0}+\frac{1}{2} k\left(x_{r e f}-x_{e q}\right)^{2}$

Therefore the constant is

$U_{0}=-\frac{1}{2} k\left(x_{r e f}-x_{e q}\right)^{2}$

The minimum of the potential $$x_{0}$$ corresponds to the point where the x -component of the force is zero,

$\left.\frac{d U}{d x}\right|_{x=x_{0}}=2 k\left(x_{0}-x_{e q}\right)=0 \Rightarrow x_{0}=x_{e q}$

corresponding to the equilibrium position. Therefore the constant is $$U\left(x_{0}\right)=U_{0}$$ and we rewrite our potential function as

$U(x)=U\left(x_{0}\right)+\frac{1}{2} k\left(x-x_{0}\right)^{2}$

Now suppose that a potential energy function is not quadratic but still has a minimum at $$x_{0}$$. For example, consider the potential energy function

$U(x)=-U_{1}\left(\left(\frac{x}{x_{1}}\right)^{3}-\left(\frac{x}{x_{1}}\right)^{2}\right)$

(Figure 23.22), which has a stable minimum at $$x_{0}$$,

When the energy of the system is very close to the value of the potential energy at the minimum $$U\left(x_{0}\right)$$, we shall show that the system will undergo small oscillations about the minimum value $$x_{0}$$. We shall use the Taylor formula to approximate the potential function as a polynomial. We shall show that near the minimum $$x_{0}$$ we can approximate the potential function by a quadratic function similar to Equation (23.7.5) and show that the system undergoes simple harmonic motion for small oscillations about the minimum $$x_{0}$$.

We begin by expanding the potential energy function about the minimum point using the Taylor formula

$U(x)=U\left(x_{0}\right)+\left.\frac{d U}{d x}\right|_{x=x_{0}}\left(x-x_{0}\right)+\left.\frac{1}{2 !} \frac{d^{2} U}{d x^{2}}\right|_{x=x_{0}}\left(x-x_{0}\right)^{2}+\left.\frac{1}{3 !} \frac{d^{3} U}{d x^{3}}\right|_{x=x_{0}}\left(x-x_{0}\right)^{3}+\cdots$

where $$\left.\frac{1}{3 !} \frac{d^{3} U}{d x^{3}}\right|_{x=x_{0}}\left(x-x_{0}\right)^{3}$$ is a third order term in that it is proportional to $$\left(x-x_{0}\right)^{3}$$, and $$\left.\frac{d^{3} U}{d x^{3}}\right|_{x=x_{0}},\left.\frac{d^{2} U}{d x^{2}}\right|_{x=x_{0}}, \quad \text { and }\left.\frac{d U}{d x}\right|_{x=x_{0}}$$ are constants. If $$x_{0}$$ is the minimum of the potential energy, then the linear term is zero, because

$\left.\frac{d U}{d x}\right|_{x=x_{0}}=0$

and so Equation ((23.7.7)) becomes

$U(x) \simeq U\left(x_{0}\right)+\left.\frac{1}{2} \frac{d^{2} U}{d x^{2}}\right|_{x=x_{0}}\left(x-x_{0}\right)^{2}+\left.\frac{1}{3 !} \frac{d^{3} U}{d x^{3}}\right|_{x=x_{0}}\left(x-x_{0}\right)^{3}+\cdots$

For small displacements from the equilibrium point such that $$\left|x-x_{0}\right|$$ is sufficiently small, the third order term and higher order terms are very small and can be ignored. Then the potential energy function is approximately a quadratic function,

$U(x) \simeq U\left(x_{0}\right)+\left.\frac{1}{2} \frac{d^{2} U}{d x^{2}}\right|_{x=x_{0}}\left(x-x_{0}\right)^{2}=U\left(x_{0}\right)+\frac{1}{2} k_{e f f}\left(x-x_{0}\right)^{2}$

where we define $$k_{eff}$$, the effective spring constant, by

$\left.k_{e f f} \equiv \frac{d^{2} U}{d x^{2}}\right|_{x=x_{0}}$

Because the potential energy function is now approximated by a quadratic function, the system will undergo simple harmonic motion for small displacements from the minimum with a force given by

$F_{x}=-\frac{d U}{d x}=-k_{e f f}\left(x-x_{0}\right)$

At $$x=x_{0}$$, the force is zero

$F_{x}\left(x_{0}\right)=\frac{d U}{d x}\left(x_{0}\right)=0$

We can determine the period of oscillation by substituting Equation (23.7.12) into Newton’s Second Law

$-k_{eff}\left(x-x_{0}\right)=m_{eff} \frac{d^{2} x}{d t^{2}}$

where $$m_{eff}$$ is the effective mass. For a two-particle system, the effective mass is the reduced mass of the system.

$m_{eff}=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \equiv \mu_{red}$

Equation (23.7.14) has the same form as the spring-object ideal oscillator. Therefore the angular frequency of small oscillations is given by

$\omega_{0}=\sqrt{\frac{k_{e f f}}{m_{e f f}}}=\sqrt{(\left.\frac{d^{2} U}{d x^{2}}\right|_{x=x_{0}})/{m_{e f f}}}$

## Example 23.6: Quartic Potential

A system with effective mass m has a potential energy given by

$U(x)=U_{0}\left(-2\left(\frac{x}{x_{0}}\right)^{2}+\left(\frac{x}{x_{0}}\right)^{4}\right)$

where $$U_{0}$$ and $$x_{0}$$ are positive constants and $$U(0)=0$$ (a) Find the points where the force on the particle is zero. Classify these points as stable or unstable. Calculate the value of $$U(x) / U_{0}$$ at these equilibrium points. (b) If the particle is given a small displacement from an equilibrium point, find the angular frequency of small oscillation.

Solution: (a) A plot of $$U(x) / U_{0}$$ as a function of $$x / x_{0}$$ is shown in Figure 23.23. Figure 22.23 Plot of $$U(x) / U_{0}$$ as a function of $$x / x_{0}$$

The force on the particle is zero at the minimum of the potential energy,

$\begin{array}{l} 0=\frac{d U}{d x}=U_{0}\left(-4\left(\frac{1}{x_{0}}\right)^{2} x+4\left(\frac{1}{x_{0}}\right)^{4} x^{3}\right) \\ =-4 U_{0} x\left(\frac{1}{x_{0}}\right)^{2}\left(1-\left(\frac{x}{x_{0}}\right)^{2}\right) \Rightarrow x^{2}=x_{0}^{2} \text { and } x=0 \end{array}$

The equilibrium points are at $$x=\pm x_{0}$$ which are stable and x = 0 which is unstable. The second derivative of the potential energy is given by

$\frac{d^{2} U}{d x^{2}}=U_{0}\left(-4\left(\frac{1}{x_{0}}\right)^{2}+12\left(\frac{1}{x_{0}}\right)^{4} x^{2}\right)$

If the particle is given a small displacement from $$x=x_{0}$$ then

$\left.\frac{d^{2} U}{d x^{2}}\right|_{x=x_{0}}=U_{0}\left(-4\left(\frac{1}{x_{0}}\right)^{2}+12\left(\frac{1}{x_{0}}\right)^{4} x_{0}^{2}\right)=U_{0} \frac{8}{x_{0}^{2}}$

(b) The angular frequency of small oscillations is given by

$\omega_{0}=\sqrt{\left.\frac{d^{2} U}{d x^{2}}\right|_{x=x_{0}} / m}=\sqrt{\frac{8 U_{0}}{m x_{0}^{2}}}$

## Example 23.7: Lennard-Jones 6-12 Potential

A commonly used potential energy function to describe the interaction between two atoms is the Lennard-Jones 6-12 potential

$U(r)=U_{0}\left[\left(r_{0} / r\right)^{12}-2\left(r_{0} / r\right)^{6}\right] ; r>0$

where r is the distance between the atoms. Find the angular frequency of small oscillations about the stable equilibrium position for two identical atoms bound to each other by the LennardJones interaction. Let m denote the effective mass of the system of two atoms.

Solution: The equilibrium points are found by setting the first derivative of the potential energy equal to zero,

$0=\frac{d U}{d r}=U_{0}\left[-12 r_{0}^{12} r^{-13}+12 r_{0}^{6} r^{-7}\right]=U_{0} 12 r_{0}^{6} r^{-7}\left[-\left(\frac{r_{0}}{r}\right)^{6}+1\right]$

The equilibrium point occurs when $$r=r_{0}$$ The second derivative of the potential energy function is

$\frac{d^{2} U}{d r^{2}}=U_{0}\left[+(12)(13) r_{0}^{12} r^{-14}-(12)(7) r_{0}^{6} r^{-8}\right]$

Evaluating this at $$r=r_{0}$$ yields

$\left.\frac{d^{2} U}{d r^{2}}\right|_{r=r_{0}}=72 U_{0} r_{0}^{-2}$

The angular frequency of small oscillation is therefore

$\omega_{0}=\sqrt{\left.\frac{d^{2} U}{d r^{2}}\right|_{r=r_{0}} / m}$

$=\sqrt{72 U_{0} / m r_{0}^{2}}$

23.7: Small Oscillations is shared under a not declared license and was authored, remixed, and/or curated by Peter Dourmashkin (MIT OpenCourseWare) via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.