Skip to main content
Physics LibreTexts

23.11: Solution to the Forced Damped Oscillator Equation

  • Page ID
    25900
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We shall now use complex numbers to solve the differential equation

    \[F_{0} \cos (\omega t)=m \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+k x \nonumber \]

    We begin by assuming a solution of the form

    \[x(t)=x_{0} \cos (\omega t+\phi) \nonumber \]

    where the amplitude \(x_{0}\) and the phase constant \(\phi\) need to be determined. We begin by defining the complex function

    \[z(t)=x_{0} e^{i(\omega t+\phi)} \nonumber \]

    Our desired solution can be found by taking the real projection

    \[x(t)=\operatorname{Re}(z(t))=x_{0} \cos (\omega t+\phi) \nonumber \]

    Our differential equation can now be written as

    \[F_{0} e^{i \omega t}=m \frac{d^{2} z}{d t^{2}}+b \frac{d z}{d t}+k z \nonumber \]

    We take the first and second derivatives of Equation (23.D.3),

    \[\frac{d z}{d t}(t)=i \omega x_{0} e^{i(\omega t+\phi)}=i \omega z \nonumber \]

    \[\frac{d^{2} z}{d t^{2}}(t)=-\omega^{2} x_{0} e^{i(\omega t+\phi)}=-\omega^{2} z \nonumber \]

    We substitute Equations (23.D.3), (23.D.6), and (23.D.7) into Equation (23.D.5) yielding

    \[F_{0} e^{i \omega t}=\left(-\omega^{2} m+b i \omega+k\right) z=\left(-\omega^{2} m+b i \omega+k\right) x_{0} e^{i(\omega t+\phi)} \nonumber \]

    We divide Equation (23.D.8) through by \(e^{i \omega t}\) and collect terms using yielding

    \[x_{0} e^{i \phi}=\frac{F_{0} / m}{\left(\left(\omega_{0}^{2}-\omega^{2}\right)+i(b / m) \omega\right)} \nonumber \]

    where we have used \(\omega_{0}^{2}=k / m\). Introduce the complex number

    \[z_{1}=\left(\omega_{0}^{2}-\omega^{2}\right)+i(b / m) \omega \nonumber \]

    Then Equation (23.D.9) can be written as

    \[x_{0} e^{i \phi}=\frac{F_{0}}{m y} \nonumber \]

    Multiply the numerator and denominator of Equation (23.D.11) by the complex conjugate \(\bar{z}_{1}=\left(\omega_{0}^{2}-\omega^{2}\right)-i(b / m) \omega\) yeilding

    \[x_{0} e^{i \phi}=\frac{F_{0} \bar{z}_{1}}{m z_{1} \bar{z}_{1}}=\frac{F_{0}}{m} \frac{\left(\left(\omega_{0}^{2}-\omega^{2}\right)-i(b / m) \omega\right)}{\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(b / m)^{2} \omega^{2}\right)} \equiv u+i v \nonumber \]

    where

    \[u=\frac{F_{0}}{m} \frac{\left(\omega_{0}^{2}-\omega^{2}\right)}{\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(b / m)^{2} \omega^{2}\right)} \nonumber \]

    \[v=-\frac{F_{0}}{m} \frac{(b / m) \omega}{\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(b / m)^{2} \omega^{2}\right)} \nonumber \]

    Therefore the modulus \(x_{0}\) is given by

    \[x_{0}=\left(u^{2}+v^{2}\right)^{1 / 2}=\frac{F_{0} / m}{\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(b / m)^{2} \omega^{2}\right)} \nonumber \]

    and the phase is given by

    \[\phi=\tan ^{-1}(v / u)=\frac{-(b / m) \omega}{\left(\omega_{0}^{2}-\omega^{2}\right)} \nonumber \]


    This page titled 23.11: Solution to the Forced Damped Oscillator Equation is shared under a not declared license and was authored, remixed, and/or curated by Peter Dourmashkin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.