# 23.11: Solution to the Forced Damped Oscillator Equation

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

We shall now use complex numbers to solve the differential equation

$F_{0} \cos (\omega t)=m \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+k x \nonumber$

We begin by assuming a solution of the form

$x(t)=x_{0} \cos (\omega t+\phi) \nonumber$

where the amplitude $$x_{0}$$ and the phase constant $$\phi$$ need to be determined. We begin by defining the complex function

$z(t)=x_{0} e^{i(\omega t+\phi)} \nonumber$

Our desired solution can be found by taking the real projection

$x(t)=\operatorname{Re}(z(t))=x_{0} \cos (\omega t+\phi) \nonumber$

Our differential equation can now be written as

$F_{0} e^{i \omega t}=m \frac{d^{2} z}{d t^{2}}+b \frac{d z}{d t}+k z \nonumber$

We take the first and second derivatives of Equation (23.D.3),

$\frac{d z}{d t}(t)=i \omega x_{0} e^{i(\omega t+\phi)}=i \omega z \nonumber$

$\frac{d^{2} z}{d t^{2}}(t)=-\omega^{2} x_{0} e^{i(\omega t+\phi)}=-\omega^{2} z \nonumber$

We substitute Equations (23.D.3), (23.D.6), and (23.D.7) into Equation (23.D.5) yielding

$F_{0} e^{i \omega t}=\left(-\omega^{2} m+b i \omega+k\right) z=\left(-\omega^{2} m+b i \omega+k\right) x_{0} e^{i(\omega t+\phi)} \nonumber$

We divide Equation (23.D.8) through by $$e^{i \omega t}$$ and collect terms using yielding

$x_{0} e^{i \phi}=\frac{F_{0} / m}{\left(\left(\omega_{0}^{2}-\omega^{2}\right)+i(b / m) \omega\right)} \nonumber$

where we have used $$\omega_{0}^{2}=k / m$$. Introduce the complex number

$z_{1}=\left(\omega_{0}^{2}-\omega^{2}\right)+i(b / m) \omega \nonumber$

Then Equation (23.D.9) can be written as

$x_{0} e^{i \phi}=\frac{F_{0}}{m y} \nonumber$

Multiply the numerator and denominator of Equation (23.D.11) by the complex conjugate $$\bar{z}_{1}=\left(\omega_{0}^{2}-\omega^{2}\right)-i(b / m) \omega$$ yeilding

$x_{0} e^{i \phi}=\frac{F_{0} \bar{z}_{1}}{m z_{1} \bar{z}_{1}}=\frac{F_{0}}{m} \frac{\left(\left(\omega_{0}^{2}-\omega^{2}\right)-i(b / m) \omega\right)}{\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(b / m)^{2} \omega^{2}\right)} \equiv u+i v \nonumber$

where

$u=\frac{F_{0}}{m} \frac{\left(\omega_{0}^{2}-\omega^{2}\right)}{\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(b / m)^{2} \omega^{2}\right)} \nonumber$

$v=-\frac{F_{0}}{m} \frac{(b / m) \omega}{\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(b / m)^{2} \omega^{2}\right)} \nonumber$

Therefore the modulus $$x_{0}$$ is given by

$x_{0}=\left(u^{2}+v^{2}\right)^{1 / 2}=\frac{F_{0} / m}{\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(b / m)^{2} \omega^{2}\right)} \nonumber$

and the phase is given by

$\phi=\tan ^{-1}(v / u)=\frac{-(b / m) \omega}{\left(\omega_{0}^{2}-\omega^{2}\right)} \nonumber$

This page titled 23.11: Solution to the Forced Damped Oscillator Equation is shared under a not declared license and was authored, remixed, and/or curated by Peter Dourmashkin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.