11.6: Hamiltonian
- Page ID
- 9619
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Since the center-of-mass Lagrangian is not an explicit function of time, then
\[\frac{dH_{cm}}{dt}=\mathcal{-}\frac{\partial L_{cm}}{\partial t}=0\]
Thus the center-of mass Hamiltonian \(H_{cm}\) is a constant of motion. However, since the transformation to center of mass can be time dependent, then \(H_{cm}\neq E,\) that is, it does not include the total energy because the kinetic energy of the center-of-mass motion has been omitted from \(H_{cm}\). Also, since no transformation is involved, then
\[H_{cm}=T_{cm}+U=E_{cm}\]
That is, the center-of-mass Hamiltonian \(H_{cm}\) equals the center-of-mass total energy. The center-of-mass Hamiltonian then can be written using the effective potential \((11.4.6)\) in the form \[H_{cm}= \frac{p_{r}^{2}}{2\mu }+\frac{p_{\theta }^{2}}{2\mu r^{2}}+U(r)=\frac{ p_{r}^{2}}{2\mu }+\frac{l^{2}}{2\mu r^{2}}+U(r)=\frac{p_{r}^{2}}{2\mu } +U_{eff}(r)=E_{cm} \label{11.42}\]
It is convenient to express the center-of-mass Hamiltonian \(H_{cm}\) in terms of the energy equation for the orbit in a central field using the transformed variable \(u=\frac{1}{r}\). Substituting equations \((11.4.6)\) and \((11.5.3)\) into the Hamiltonian Equation \ref{11.42} gives the energy equation of the orbit \[\frac{l^{2}}{2\mu }\left[ \left( \frac{du}{d\psi }\right) ^{2}+u^{2}\right] +U\left( u^{-1}\right) =E_{cm}\]
Energy conservation allows the Hamiltonian to be used to solve problems directly. That is, since
\[H_{cm}=\frac{\mu \dot{r}^{2}}{2}+\frac{l^{2}}{2\mu r^{2}}+U(r)=E_{cm}\]
then
\[\dot{r}=\frac{dr}{dt}=\pm \sqrt{\frac{2}{\mu }\left( E_{cm}-U-\frac{l^{2}}{ 2\mu r^{2}}\right) }\label{11.45}\]
The time dependence can be obtained by integration
\[t=\int \frac{\pm dr}{\sqrt{\frac{2}{\mu }\left( E_{cm}-U-\frac{l^{2}}{2\mu r^{2}}\right) }}+\text{ constant}\label{11.46}\]
An inversion of this gives the solution in the standard form \(r=r\left( t\right) .\) However, it is more interesting to find the relation between \(r\) and \(\theta .\) From relation \ref{11.46} for \(\frac{dr}{dt}\) then
\[dt=\frac{\pm dr}{\sqrt{\frac{2}{\mu }\left( E_{cm}-U-\frac{l^{2}}{2\mu r^{2}} \right) }}\]
while equation \((11.4.2)\) gives
\[d\psi =\frac{ldt}{\mu r^{2}}=\frac{\pm ldr}{r^{2}\sqrt{2\mu \left( E_{cm}-U- \frac{l^{2}}{2\mu r^{2}}\right) }}\]
Therefore
\[\psi =\int \frac{\pm ldr}{r^{2}\sqrt{2\mu \left( E_{cm}-U-\frac{l^{2}}{2\mu r^{2}}\right) }}+\text{ constant}\label{11.49} \]
which can be used to calculate the angular coordinate. This gives the relation between the radial and angular coordinates which specifies the trajectory.
Although equations \ref{11.45} and \ref{11.49} formally give the solution, the actual solution can be derived analytically only for certain specific forms of the force law and these solutions differ for attractive versus repulsive interactions.