11.3: Co-axial Cables
- Page ID
- 22729
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Cylindrical co-ordinates are appropriate for the problem of a co-axial cable, Figure (11.2.3). The relevant Maxwell’s equations become
\[\operatorname{curl}(\vec{\text{E}})=-\mu_{0} \frac{\partial \vec{\text{H}}}{\partial \text{t}}, \nonumber\]
and
\[\operatorname{curl}(\vec{\text{H}})=\epsilon \frac{\partial \vec{\text{E}}}{\partial \text{t}}, \nonumber \]
where \(\epsilon\) is a real number for a lossless line. Look for solutions of these equations in which, by analogy with a strip-line curved around on itself, the electric field has only a radial component, Er , that is independent of angle, and the magnetic field has only an angularly independent component Hθ:
\[\begin{align}
&\frac{\partial \text{E}_{\text{r}}}{\partial \text{z}}=-\mu_{0} \frac{\partial \text{H}_{\theta}}{\partial \text{t}}, \label{11.12}\\
&\frac{\partial \text{H}_{\theta}}{\partial \text{z}}=-\epsilon \frac{\partial \text{E}_{\text{r}}}{\partial \text{t}}.
\end{align}\]
In addition, take Ez = 0 because the tangential components of the electric field must be zero at the perfectly conducting walls of the co-axial cable. But if Ez = 0 it follows from Maxwell’s equations that
\[\operatorname{curl}(\vec{\text{H}})_{z}=0=\frac{1}{\text{r}} \frac{\partial}{\partial \text{r}}\left(\text{rH}_{\theta}\right). \nonumber \]
This implies that
\[\text{H}_{\theta}=\frac{\text{a}(\text{z}, \text{t})}{\text{r}}, \label{11.13}\]
where a(z,t) is a function of time and of position along the cable. Similarly, from div(\(\vec E\)) = 0 one has
\[\frac{1}{\text{r}} \frac{\partial}{\partial \text{r}}\left(\text{rE}_{\text{r}}\right)=0, \nonumber\]
and this is satisfied by
\[\text{E}_{\text{r}}=\frac{\text{b}(\text{z}, \text{t})}{\text{r}}. \label{11.14}\]
By combining the Maxwell Equations (\ref{11.12}) the electric and magnetic fields, Equations (\ref{11.13}) and (\ref{11.14}), must satisfy
\[\begin{align}
&\frac{\partial^{2} \text{E}_{\text{r}}}{\partial \text{z}^{2}}=-\mu_{0} \frac{\partial^{2} \text{H}_{\theta}}{\partial \text{z} \partial \text{t}}=\epsilon \mu_{0} \frac{\partial^{2} \text{E}_{\text{r}}}{\partial \text{t}^{2}}, \label{11.15}\\
&\frac{\partial^{2} \text{H}_{\theta}}{\partial \text{z}^{2}}=-\epsilon \frac{\partial^{2} \text{E}_{\text{r}}}{\partial \text{z} \partial \text{t}}=\epsilon \mu_{0} \frac{\partial^{2} \text{H}_{\theta}}{\partial \text{t}^{2}}.
\end{align}\]
These have the same form as the strip-line equations (11.2.3). It follows from these equations,and from the requirements (\ref{11.13}) and (\ref{11.14}), that the general solution for the electric field can be written
\[\text{E}_{\text{r}}(\text{z}, \text{t})=\frac{\text{F}(\text{z}-\text{vt})}{\text{r}}+\frac{\text{G}(\text{z}+\text{vt})}{\text{r}}, \label{11.16}\]
where F(u) and G(u) are arbitrary functions of their arguments, and where
\[\text{v}=\frac{1}{\sqrt{\epsilon \mu_{0}}}. \nonumber \]
The corresponding general solution for the magnetic field is
\[\text{H}_{\theta}(\text{z}, \text{t})=\epsilon \text{v}\left(\frac{\text{F}(\text{z}-\text{vt})}{\text{r}}-\frac{\text{G}(\text{z}+\text{vt})}{\text{r}}\right). \label{11.17}\]
The above electric and magnetic fields satisfy the wave equations (\ref{11.15}), they satisfy Equations (\ref{11.12}), and they have the form required by Equations (\ref{11.13} and \ref{11.14}).
Instead of the electric field strength, the state of the electric field in the cable can be specified by the potential difference between the inner and outer conductors:
\[\text{V}=\int_{\text{R}_{1}}^{\text{R}_{2}} \text{E}_{\text{r}} \text{dr}=\text{F}(\text{z}-\text{vt}) \int_{\text{R}_{1}}^{\text{R}_{2}} \frac{\text{d} \text{r}}{\text{r}}=\text{F}(\text{z}-\text{vt}) \ln \left(\frac{\text{R}_{2}}{\text{R}_{1}}\right) \nonumber\]
for a forward propagating wave. Note that the inner conductor is positive with respect to the outer conductor. The corresponding current on the inner conductor is given by
\[\text{I}=\text{J}_{\text{z}}\left(2 \pi \text{R}_{1}\right)=\text{H}_{\theta}\left(\text{R}_{1}\right)\left(2 \pi \text{R}_{1}\right)=\epsilon \text{v}\left(2 \pi \text{R}_{1}\right) \frac{\text{F}(\text{z}-\text{vt})}{\text{R}_{1}}, \nonumber\]
so that
\[\text{I}=2 \pi \epsilon \text{v} \text{F}(\text{z}-\text{vt}). \nonumber\]
The current flows flows towards +z for the current on the inner conductor; the current flows towards minus z on the outer conductor. That is, on the outer conductor
\[\text{I}=-2 \pi \text{R}_{2} \text{H}_{\theta}\left(\text{R}_{2}\right)=-2 \pi \epsilon \text{v} \text{F}(\text{z}-\text{vt}). \nonumber\]
so that the net current flow through a section of the cable is zero. The characteristic impedance of the cable is given by
\[\text{Z}_{0}=\frac{\text{V}}{\text{I}}=\frac{1}{2 \pi \epsilon \text{v}} \ln \left(\frac{\text{R}_{2}}{\text{R}_{1}}\right)\nonumber\]
or
\[\text{Z}_{0}=\frac{1}{2 \pi} \sqrt{\frac{\mu_{0}}{\epsilon}} \ln \left(\frac{\text{R}_{2}}{\text{R}_{1}}\right). \label{11.18}\]
The potential difference, V, is proportional to the electric field, Er , and the current, I, is proportional to the magnetic field, Hθ, therefore from Equations (\ref{11.15}) the voltage and current satisfy the wave equations
\[\begin{align}
&\frac{\partial^{2} \text{V}}{\partial \text{z}^{2}}=\frac{1}{\text{v}^{2}} \frac{\partial^{2} \text{V}}{\partial \text{t}^{2}}, \label{11.19}\\
&\frac{\partial^{2} I}{\partial z^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} I}{\partial t^{2}},
\end{align}\]
where v2 = 1/(\(\epsilon\)µ0). For a forward propagating pulse having the form
\[V(z, t)=F(z-v t) \nonumber\]
the corresponding current pulse is described by
\[\text{I}(\text{z}, \text{t})=\frac{1}{\text{Z}_{0}} \text{F}(\text{z}-\text{vt})=\frac{\text{V}(\text{z}, \text{t})}{\text{Z}_{0}}, \label{11.20}\]
where the characteristic impedance for a co-axial cable is given by Equation (11.18). For a backward propagating potential pulse of the form
\[\text{V}(\text{z}, \text{t})=\text{G}(\text{z}+\text{vt}) \nonumber \]
the corresponding current pulse is described by
\[\text{I}(\text{z}, \text{t})=-\frac{1}{\text{Z}_{0}} \text{V}(\text{z}, \text{t})=-\frac{\text{G}(\text{z}+\text{vt})}{\text{Z}_{0}}. \label{11.21}\]
In the above equations F(z-vt) and G(z+vt) are arbitrary functions of their arguments.