Skip to main content
Physics LibreTexts

12.11: 2P-1S Transitions in Hydrogen

  • Page ID
    15959
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Let us calculate the rate of spontaneous emission between the first excited state (i.e., \(n=2\)) and the ground-state (i.e., \(n'=1\)) of a hydrogen atom. Now, the ground-state is characterized by \(l'=m'=0\). Hence, in order to satisfy the selection rules ([e13.133]) and ([e13.134]), the excited state must have the quantum numbers \(l=1\) and \(m=0,\,\pm 1\). Thus, we are dealing with a spontaneous transition from a \(2P\) to a \(1S\) state. Note, incidentally, that a spontaneous transition from a \(2S\) to a \(1S\) state is forbidden by our selection rules.

    According to Section [s10.4], the wavefunction of a hydrogen atom takes the form \[\psi_{n,l,m}(r,\theta,\phi) = R_{n,l}(r)\,Y_{l,m}(\theta,\phi),\] where the radial functions \(R_{n,l}\) are given in Section [s10.4], and the spherical harmonics \(Y_{l,m}\) are given in Section [sharm]. Some straightforward, but tedious, integration reveals that \[\begin{aligned} \langle 1,0,0|x|2,1,\pm 1\rangle &=\pm \frac{2^{\,7}}{3^{\,5}}\,a_0,\\[0.5ex] \langle 1,0,0|y|2,1,\pm 1\rangle &= {\rm i}\,\frac{2^{\,7}}{3^{\,5}}\,a_0,\\[0.5ex] \langle 1,0,0|z|2,1,0\rangle &=\sqrt{2}\, \frac{2^{\,7}}{3^{\,5}}\,a_0,\end{aligned}\] where \(a_0\) is the Bohr radius specified in Equation ([e9.57]). All of the other possible \(2P\rightarrow 1S\) matrix elements are zero because of the selection rules. It follows from Equation ([e13.128]) that the modulus squared of the dipole moment for the \(2P\rightarrow 1S\) transition takes the same value \[\label{e13.139} d^{\,2} = \frac{2^{\,15}}{3^{\,10}}\,(e\,a_0)^{\,2}\] for \(m=0\), \(1\), or \(-1\). Clearly, the transition rate is independent of the quantum number \(m\). It turns out that this is a general result.

    Now, the energy of the eigenstate of the hydrogen atom characterized by the quantum numbers \(n\), \(l\), \(m\) is \(E = E_0/n^{\,2}\), where the ground-state energy \(E_0\) is specified in Equation ([e9.56]). Hence, the energy of the photon emitted during a \(2P\rightarrow 1S\) transition is \[\label{e13.140} \hbar\,\omega = E_0/4 - E_0 = -\frac{3}{4}\,E_0 = 10.2\,{\rm eV}.\] This corresponds to a wavelength of \(1.215\times 10^{-7}\) m.

    Finally, according to Equation ([e3.115]), the \(2P\rightarrow 1S\) transition rate is written \[w_{2P\rightarrow 1S} = \frac{\omega^{\,3}\,d^{\,2}}{3\pi\,\epsilon_0\,\hbar\,c^{\,3}},\] which reduces to \[w_{2P\rightarrow 1S} = \left(\frac{2}{3}\right)^8\,\alpha^{\,5}\,\frac{m_e\,c^{\,2}}{\hbar} = 6.27\times 10^8\,{\rm s}^{-1}\] with the aid of Equations ([e13.139]) and ([e13.140]). Here, \(\alpha=1/137\) is the fine-structure constant. Hence, the mean life-time of a hydrogen \(2P\) state is \[\tau_{2P} = (w_{2P\rightarrow 1S})^{-1} = 1.6\,{\rm ns}.\] Incidentally, because the \(2P\) state only has a finite life-time, it follows from the energy-time uncertainty relation that the energy of this state is uncertain by an amount \[{\mit\Delta} E_{2P} \sim \frac{\hbar}{\tau_{2P}}\sim 4\times 10^{-7}\,{\rm eV}.\] This uncertainty gives rise to a finite width of the spectral line associated with the \(2P\rightarrow 1S\) transition. This natural line-width is of order

    \begin{equation}\frac{\Delta \lambda}{\lambda} \sim \frac{\Delta E_{2 P}}{\hbar \omega} \sim 4 \times 10^{-8}\end{equation}

    Contributors and Attributions

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    This page titled 12.11: 2P-1S Transitions in Hydrogen is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?